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PREFACE

The 1991 U.S. Army Chemical Research, Development and
Engineering Center Scientific Conference on Obscuration and Aerosol
Research was held 24 - 28 June 1991 at the Edgewood Area Conference
Center of Aberdeen Proving Ground, MD. The Conference is held annually,
the last full week in June, under the direction of Dr. Edward Steubing,
Research Area Coordinator, Aerosol Science. This report was authorized
under project number 10161102A71A, Research in CW/CB Defense.

The Conference is an informal forum for scientific exchange and
stimulation among investigators in the wide variety of disciplines required for
aerosol research, including a description of an obscuring aerosol and its
effects. The participants develop some familiarity with the U.S. Army
aerosol and obscuration science research programs and also become
personally acquainted with the other investigators and their research
interests and capabilities. Each attendee is invited to present any aspect of
a topic of interest and may make last minute changes or alterations in his
presentation as the flow of ideas in the Conference develops.

While all participants in the Conference are invited to submit papers
for the proceedings of the Conference, each investigator, who is funded by
the U.S. Army Research Program, is requested to provide one or more
written papers that document specifically the progress made in his funded
effort in the previous year and indicating future directions. Also, the papers
for the proceedings are collected in the Fall to allow time for the fresh ideas
that arise at the Conference to be incorporated. Therefore, while the papers
in these proceedings tend to closely correspond to what was presented at
the Conference, there is not an exact correspondence.

The reader will find the items relating to the Conference itself,
photographs, the list of attendees, and the agenda in the appendixes
following the papers and in the indexes pertaining to them.

The use of trade names or manufacturers' names in this report does
not constitute an official endorsement of any commercial products. This
report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited
except with permission of the Commander, U.S. Army Chemical Research,
Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen
Proving Ground, MD 21010-5423. However, the Defense Technical
Information Center and the National Technical Information Service are
authorized to reproduce this document for U.S. Guvernmcnt purposes.

This report has been approved for release to the public.
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PROCEEDINGS OF THE 1991 SCIENTIFIC CONFERENCE ON
OBSCURATION AND AEROSOL RESEARCH

I. AEROSOL DYNAMICS
A. VAPOR - PARTICLE INTERACTIONS

CONDENSATION OF ORGANIC VAPORS BY EVAPORATING WATER DROPS

Mark Seaver and J. R. Peele
Naval Research Lab

Code 6540
Washington, DC. 20375

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATIONS:

A) M. Seaver, A. Galloway and T. J. Manuccia, "Water Condensation onto an
Evaporating Drop of 1-butanol", Aerosol Science and Technology 12, 741
(1990).

B) m. Seavez, J. R. Peele and G. 0. Rubel, "Gas Scavenging of Insoluble
Vapors: Condensation of Methyl Salicylate Vapor onto Evaporating Drops of
Water", Atmos. Environ. (accepted for publication).

C) M. Seaver and J.R. Peele, "Condensation of Miscible and Immiscible
Vapors by Evaporating Drops of Water", in Precipitation Scavengi'ig and
Atmosphere Surface Exchange Processes, S.E. Schwartz, ed. (American
meteorological Society, Boston, 1992).

D) M. Seaver and J. R. Peele, "Scavenging of Miscible and Immiscible Vapors
by Evaporating Drops of water", 5th International Conference on Precipitation
Scavenging and Atmosphere-Surface Exchiange Processes, July 15-19, 1991,
Richland, WA.

Abstract:

Experiments in which a levitated a drop of water evaporates into a

flowing airstream which is nearly saturated with methyl salicylate vapor show

that the amount of methyl salicylate collected exceeds its solubility by a

factor of 50. A simple model, which treats the mettyl salicylate as an

insoluble substance, accurately accounts for the amount of methyl salicylate

collected. When the air stream contains the completely soluble substance,

dimethyl methyl phosphonate, an extension of the model to nonideal solutions

only accounts for 80 of the amount of vapor scavenged by the evaporating

drop. Future work will focus on resolving this de3crepancy between the

experiment and the model prediction (which should be an upper Iinit)

Introduction:

The ai./water distribuLion plays a central role in determining the fate

and mobility of chemicals in our environment. Aquv'ou5 solutio.i models predict

that, aL equiltbrium, the air/water di-tribution can be found by applying
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ilenry's law. However, recent field rrý-asuremenLs of pesticides in fog water

have shown that the pesticide concentrations can exceed their solubility as
predicted from Henry's law and the measured vapor concentrations by as much as

three orders of magniitude (Glotfelty et. al., 1987, 1990). The .hemical
similarity between pesticides and chemical agents suggests that these findings

should also apply to chemical agents.

In an attempt to delineate mechanisms whereby Henry's law may be
violated and therefore define the conditions under which models applying

Henry's law are valid, we nave begun a series of laboratory experiments where

we evaporate single drops of water into a moving gas stream which contains on•

organic chemical vapor and varying amounts of water vapor. In this paper we

report the results obtained when the organic vapors methyl salicylate (MS) or
dimethyl methyl phosphonate (DMMP) are added to the gas st.Loam. The MS

simulates the pesticide paraoxon in terms of in's water solubility, 0.07% by

vol. The DMMP represents a low vapor pressure species which is completely

soluble in water

Experimental:
The apparatus has been described in detail (Seaver et. al., 1989).

However, a brief description ia in order. The experiments are carried out by
levitating single drops of liquid with an acoustic standing wave in the center
of the jet of a small horizontal wind tunnel. Vapors are added to the dry
nil .Ten carrier gas by flowing (in parallel) the nitrogen over a heated pool

of jk-i liquid. Subsequent passage through a condenser held at constant

temperature then establishes the partial pressure of that vapor in the gas
stream. When both water and an organic vapor are present, the separate

nitrogen streams are mixed prior to entering a heat exchanger. The heat

ey-hanger sets the ambient temperature of the gas mixture in the wind tunnel
at a value somewhat higher than the saturation temperature of the organic

vapor. Insulation of the wind tunnel and gas delivery apparatus allows us to
run at gas temperatures above room temperature without condensation on the

walls.

Model:
The model is a steady-state continuum model for condensation and

evaporation that takes into account the relative motion between -he drop and

the gas stream and tracks the drop temperature. For a two component system

the total mass of the drop is given by:

dt • t I f-•' , f,,,o.

The drop temperature is given by:

10
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A description cf the parameters in these equations are given in Pruppacher and
Klett (1978) oh. 13 or Seaver et. al.(1989).

For an insoluble species we assume that the substance deposits as a
uniform layer on the surface of the water drop. We also assume that the
presence of this layer does not effect the evaporation rate of the inner water
drop (infinite diffusivity). (This assumption should be adequete for all but

the thickest layers of organic liquid.) The mass of each species is
calculated indqpendently and convertad to a volume. The surface area, for
comparison with experiment, is then obtained by adding the volumes of the two
liquids and assuming a spheric.al drop.

ror a nonideal solution the partial pressure of a given component above

0the liquid is given by: Pi - gixipi. This is substituted for p,., and p, das
needed. Again, for simplicity, we assume infinite diffusivity in the liquid

phase. (Thus, our model establishes an upper limit on the gas-->liquid
transport.) Drop volume is converted to surface area through the molar volume
of the solutijn (V,) . Vm is obtained from the mole fractions (x,) and the
partial molar volumes (Vi,,) of the two components: Vm = xwVw,m + x0Vo,,.

Results:

20

3

16

"* 22e
E0

212

0

S600 *oo 1000 1200 1400

0 400 800 1200 1600 2000
time (8)

FIGURE 1. MS SCAVENGING AND MODEL COMWARISON
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Fig. I displays thei result.s when a drop of water evaporates in a gas

stream which is nearly saturated with MS vapor (p.-0.15torr) but contains no

water vapor. The solid circles represent every 8th experimental data point.
What we see is an evaporation curve whero the drop initially evaporates as a
pure water drop and ultimately evaporates as a pure MS drop. Note the sudden
change in the evaporation rate near 850s (marKed by the arrow in the inset).
Because the measured evaporation rate after this time corresponds to that of a
pure MS drop, it is valid to assume that at 850s the drop is pure MS. The
surface area of the drop at this point is 1.68mm2. The volume at this point
is 2.05xlO0". Thus, the volume of condensed MS is 56 times greater than the
volume of MS that would be dissolved in the initial waterdrop were it
saturated with MS.

To investigate the mechanism by which MS condenses onto the waterdrop,
we compare the experimental results with the evaporation/condensation model
described in the preceding section. The model predicts that, under our
experimental conditions, evaporative self-cooling reduces the waterdrop
temperature to If*C, sixteen degrees below the dew point temperature of the
gas stream for the MS (T, 1I -27 0 C). Thus, MS condensation is driven by
evaporative self-cooling. The solid line in Figure 1 is the surface area
predicted by our two-component model. What we see is that. the model
accurately predicts both the initial and final slopes of the evaporation
curve. More importantly, the model predicts that at 750s the water has all
evaporated leaving only a MS drop whose surface area is 1.73mm2 . This surface
area compares well with the experimentally determined value of 1.68mm2 . The
agreement between these two values demonstrates that evaporative self-cooling
dominates the MS condensation

Fig. 2 displays the results when we evaporate a pure waterdrop into a
dry nitrogen stream containing DMMP vapor, p.-0.71torr. The solid circles
represent the experimental data. The dashed line shows the results when the
two phase liquid model that worked so well for MS is applied to the DMMP/water
system. The solid line shows the results obtained from the nonideal solution
model. In neither case do we get satisfactory agreement with the experimental
data. What we sec is that the two phase liquid model underpredicts the DMMP
condensation volume by a factor of 42% while the nonideal solution model
underpredicts the DMMP condensation volume by 25%. (Inclusion of finite
liquid phase diffusivity in the model can only result in less DMMP
condensation.) We have compared the nonideal solution model with the
evaporation data for six different drops of water. The results are all
similar to what we show in fig. 2. For every drop, the model underpredicts
the DMMP collection volume by amounts that vary from 17% to 25%.

12
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DETERMINATION OF ABSORPTION OF MINUTE AMOUNTS OF VAPOR

IN MICRO-DROPLETS USING ELASTIC-SCATTERING DATA

A. K. Ray and J. L. Huckaby

Department of Chemical Engineering

University of Kentucky, Lexington, KY4056-0045.

ABSTRACT

A technique, based on transverse magnetic (TM) and transverse electric (TE) mode
resonances observed in the scattered light, has been developed for the detection of trace
amount of absorbed material in a microdroplet, The technique has been applied to
determine absorption of immiscible water vapor in dioctyl phthalate droplets. Experiments

were conducted in an electrodynamic balance where a charged droplet was suspended in the
path a tunable ring dye laser, Intensities of scattered light in the planes parallel and

perpendicular to the plane of polarization were detected using two photomultipliers to
isolate the TE and TM resonances in the scattered light. Wavelengths of the TE and TM
mode resonances were interpreted to determine the absolute size and refractive index as a

function of wavelength of a pure DOP droplet. The droplet was subsequently exposed to

environments with precisely controlled humidities. At each humidity level, the droplet size
and refractive index changes were obtained from the observed shifts in the TE and TM
resonating wavelengths. The size and refractive change data were then used to determine
the absorbed amount of water in the droplet as a function of relative humidity.

INTRODUCTION

The interaction of small droplets with surrounding vapor is an important

phenomenon in atmospheric, industrial and indoor air processes. Such an interaction
results in absorption of molecules from the vapor phase to the droplet phase. When the

vapor molecules a-.e miscible in the liquid state with the droplet phase, droplets can remove

vapor oniv by absorptions, and the concentration of absorbed species increases as the
partial pressure of the vapor increases. Rubell and Ray et al? have experimentally

examined the problem of absorption of water vapor on single phosphoric acid and glycerol

droplets. When the vapor molecules are partially miscible in the liquid state with the
droplet phase, droplets onjy absorb vapor molecules as long as the partia pressure of the
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vapor is below the equilibrium partial pressure corresponding to the miscibility limit.

Currently no accurate technique exists for the determination of the concentration of

absorbed molecules as a function of the partial pressure of the vapor if the miscibility limit

of the vapor molecules in the droplet phase is small. In such a situation, data on the
miscibility limit of the vapor component in the droplet phase component and vice versa are

used in a thermodynamic activity model (e.g. van Laar equation) to predict the miscibility

of vapor molecules as a function partial pressure.

The objective of the present study is to develop a technique for the detection of the

absorbed amount of partially miscible component in a droplet as a function of its partial
pressure in the gas phase. The technique is based on the precise determination of size and

refractive index of a droplet from the transverse magnetic (TM) and transverse electric

(TE) mode resonances observed in the scattered light as the wavelength of the incident

beam is varied. This study is unique in the sense that it utilizes a technique for the

determination of dispersion (i.e., variation of refractive index with wavelength) in the

droplet, In previous studies involving size and/or refractive index determination from
wavelength-dependent resonance spectra, either the size and refractive index were

simultaneously determined neglecting the effect of dispersion3 , or an absolute size was

obtained using a known dispersion formula 4. These techniques have limited applicability

or accuracy. In this study these limitations are avoided by utilizing the shapes of the

scattered intensity spectra as well the positions of resonating wavelengths.

THEORY

For a linearly polarized plane electromagnetic wave of intensity Ii and wavelength

A, incident on a sphere, the far-f -ld scattered intensities 1, and 12 in the planes parallel

and perpendicular to the plane of polarization are, respectively, given by5 "7

1,= J-r I S J(0) 1 2

and

I2= 1 1A 2 12  (2)
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where
OD

2n +~ +1~~)

SO I + 1 )bnz" + anrn], (4)

not

r (>> A) is the distance from the center of the sphere. The angular functions are defined
by

Phi(cosO) and In = nP(cosO)7r, M sino an -- V

where Pni(cos9) is the associated Legendre function of degree n and order 1, and 0 Is the
scattering angle. For a homogeneous sphere of radius a the scattering coefficients an and

bn, associated with the transverse magnetic (TM) and transverse electric (TE) modes can

be written, respectively, in the forms8 '9 :

a = An (xm) (5)An =A(x~m ) + (un5)m

bn=Bn (x,M) (6)b ]=Bn(xlm) + WDAxIM)

where
An~x,m) -- On(x)On'CMx) - MO,,(MX)On'Cx) (7)

Bn(xm) = m~n(X)On'(mx) - On(mx)On'(x) (8)

Cn(xm) = Xn(x)On'(mx) - mbn(mx)Xn'(x) (9)

Dn(x,m) = mXn(x)On'(Mx) - On(mx)Xn'(x) (10)

where Qi(x) and Xn(x) are the Ricatti-Bessel functions of the first and second kinds of

order n, respectively, x = 2wrNa/Ao is the size parameter, m = NI/N is the relative
refractive index, and N, and N are the refractive indices of the sphere and surrounding
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medium corresponding to the the vacuum wavelength Ao, respectively.

For given relative refractive index m and a mode number n, the denominators of the

scattering coefficients an and b., vanish for an Infinite number of complex values of the size

parameter x, and the complex frequencies corresponding to these values are called the

natural frequencies or modes of vibration of a sphere. These vibration modes can not be
excited by an imposed field whose frequency is real, and thus, no resonance in the strict

sense can be observed. However, when the Imposed frequency is the same as the real part

of a natural frequency, the denominator reduces to a minimum, and the scattering

amplitude achieves a maximum value. For practical purposes these maxima are considered

as resonances. For a dielectric sphere (real m), the functions An1, B.,Cn and Dn are real,

and the scattering coefficients are complex except at the resonances which occur for the

values x for which Cn(x,m) = 0, or Dn(x,m) = 0. At a resonance, an or b. is real and

reaches a peak value of 1 as the imaginary part goes from a positive to a negative value.
The locations of the peaks of the coefficients can be calculated from the roots of

C11(xm) ffi 0, and Dn(x,m) = 0 or from the roots of the characteristic equations obtained

by equating the denominators of Eq.(5) and (a) to zero. The real roots of the former

equations are Identical to the real parts of the complex roots of the latter equationsi.

Resonance peaks associated with the scattering coefficients an and b., are referred to as

TM and TE mode resonances, respectively.

The width of a peak depends on the imaginary part of the root, and decreases with

smaller imaginary part, In general, for a given mode number n, the width of a peak

increases as the order I of the root of C 1(x,m) = 0, or Dn(x,m) = 0 increases where the first

positive root is labeled as I = 1, and for a given order the width decreases as the mode

number n increases. The width of a peak of a given mode and order also decreases as the

refractive index increases. Probert-Jones9 has provided relations that approximately

provides the width of a peak of a given mode and size parameter. The approximate spacing

between two successive order resonances of the same mode and polarization is given by""'2 ,

x x N.1 (11x +-1,t+1 - ,t p (1

where p = (m2 - 1)4, The approximation is valid for large values of x (? 30), and the

accuracy increases as the size parameter x increases. Similarly, the approximate distance
18



between two resonances of successive modes having the same order and polarization can be
obtained from the following expressiong'i"

-n+11 -11 N1 P (12)

Recently, Chtlek12 has shown that the above relation is accurate to within 1% if
(n - x) < 4, and for (n - x) . 4, the following relation applies

Ac n - X xtan'[f (mx/n)2 - 1]4 (13)"x-n n n[(mx/n) 2 - 1]1

Equations (11) to (13) can be used to determine an approximate droplet size from a
wavelength-dependent intensity spectrum in which resonances of successive order and
mode can be identified,

Due to the presence of slight asphericity and small Imaginary component in the
refractive index, extremely narrow resonances cannot be detected experimentally. For a
given experimentally detectable peak width limit the observable lowest order resonance
depends on the size parameter. For example, for a detectable limit of peaks with full width
at half maximum Ax• i 10's, the lowest order resonance detectable for m = 1.4750, is 3

when x N 30, and Is 16 when x L 200. Higher order resonances due to their increasing
widths overlap with resonances of other mode, and moreover, their contributions become
comparable with higher mode terms. As a result, these resonances become
indistinguishable in an elastic scattering spectrum. Only a two to four successive order
resonances of a given mode, with the lowest order being dictated by the size parameter, can
be observed in an elastic scattering spectrum. Moreover, a detectable resonance may not
be observed in the scattered light at all angles. Whether a particular resonance will be
observed in a measured spectra depends on the contribution of the resonating term to the
overall sum as indicated by Eqs.(3) and (4). The number of observable resonances in
scattered light depends on the scattering angle. The maximum number can be detected in
the backscattering (0 = 180), and this is followed by the forward scattering (0 = 0)
direction, since for a given mode the coefficients associated with TE and TM mode
contribute oppositciy itt backscattering, whereas in forward scattering they contribute
identically. MorLeover, the resonances of both modes appear in these two directions. At
any other angle, the relative contributions of TE and TM mode coefficients for a given
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mode number n, are dictated by the functional values of 7rn and rn at that angle. At 0 L"

90g, rn/7rn >> 1 when x > 100, and as a consequence, the terms due to transverse electric

modes dominate over the terms due to transverse electric modes in Eq.(3) while a reverse

situation occurs for Eq.(4). For x > 100, intensities of scattered light at around 0 - 900, in

the planes parallel and perpendicular to the plane of polarization of the incident beam can

be approximated by

I,( tO 90oO LIt•' OD 2n + I b2(47- M= I' LZn (n + 1') n n(14)90)

ri 12
2~(0 Lgo90) r I 2rA-2  brn(o N900)] (14)

flatI

Thus, only TE mode resonances are observed by a detector recording I,(0 t 900), and only

TM mode resonances by a detector recording 12(0 u 900), Equations (14) and (15) form the

basis for the design of the experimental system for the present study.

On the basis of the theory, an experimental scattered intensity data at a fixed angle

as a function of the size parameter can be interpreted to obtain particle size and refractive

index. Intensity versus size spectra can be measured two ways: (i) using a fixed

wavelength laser beam for an evaporating or growing droplet, and (ii) by varying the

wavelength of the incident beam for a droplet with an invariant or a slowly changing size.

The former method is useful to situations where the droplet size changes significantly. The
variable wavelength method used in the present study provides highly accurate size and

refractive index information for a droplet with an invariant size, and can be used to detect

minute size and refractive index changes that occur due to the absorption of a trace

amount of vapor. Moreover, the technique can be used to detect the formation of an

adsorbed layer on the surface of a spherical particle,

An intensity spectrum obtained by varying the incident wavelength shows a series

of resonances. The positions of resonating wavelengths along with the shape of the

intensity spectrum are used for the absolute size and refractive index determination. Since

the positions of the resonating wavelengths depend on the size and refractive index of a

droplet, the positions change when the size and refractive index of the droplet change due
?0



to the absorption of a vapor. The data on the shifto of the resonating wavelengths can be
utilized to determine minute size and refractive index changes. Since in the present study

we examined the absorption of a vapor which is relatively immiscible in the liquid state

with the component of the droplet, we had to assure that the droplet remained
homogeneous when it was exposed to the vapor, that is, an absence of a second phase in the

form of a layer on the surface of the droplet. The data of the present experimental scheme

can precisely discern the presence of a layer on the surface of a droplet. The theoretical
basis for such a discrimination can be understood on the basis of the theory of scattering by

a coated sphere, Equations (1) through (4) apply for scattering by a coated sphere,

However, the expressions for the scattering coefficients a. and bn, depend on the inner size

parameter x0 = 27ra'/A, the outer size parameter x = 21ra/A, and the relative refractive
indices of me and m of the inner core and outer layer, respectively . The expressions for

the scattering coefficients for a coated sphere were derived by Aden and Kerkert 3 , and can

be found in references 6 and 7. The scattering coefficients for a coated sphere also show
resonance features similar to a homogeneous sphere. However, for two droplets, one

homogeneous and one layered, having identical amounts of two components, the position of

a resonance for the homogeneous droplet differs the position of the same order and mode
resonance for the coated droplet. When a homogeneous droplet undergoes changes in the

15i .size and refractive index during an
Size inoreaw due the addition of a component
with ref•tryiv Index m w 1,2990 on a 20 m bprocess, resonating
gropet of r.eractive Index m 1- 30 sorption Its

wavelengths of TE and TM modes shift

by almost equal amounts. However, for
-10- a size change due to the formation of a

. layer the shift of a resonating

wavelength of TE mode differs from the
1691 shift of a resonating wavelength of TM

5- omode. The difference between the shifts

S, depends on the difference between the

refractive indices of the core and layer.

Figure 1 shows calculated shifts of a TM

O'0) ...... -'0 and a TE mode resonances of a 20 j/m
SIZE INCREASE (A)

Figure 1. TE and TM resonance peak shifts for
homogeneous and coated droplets

size droplet with a refractive index m -- 1.6303 due to the homogeneous and
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inhomogeneous addition of a component with a refractive index ml,= 1.2990. The results
show that as long as the droplet remains homogeneous TE and TM resonances shift almost
identically, and the shift increases as the size increases. When the component is added in
the form of a layer, the shift of a resonating wavelength of TE mode is lower than the shift
of a resonating wavelength of TM mode, and is also almost identical to the situation where
the droplet remains homogeneous, Since in the present experimental scheme TE and TM
resonances are detected individually by two separate detectors we can precisely determine
thc formation of a layer on a droplet by comparing the shifts of resonances of the two
detectors,

EXPERIMENT

Experiments were performed on single charged dioctyl phthalate (DOP) droplets in
an electrodynamic balance which consists of two central ring electrodes and two endcap
electrodes above and below the central electrodes. An a.c, voltage drives the central ring
electrodes while a bipolar d,c. potential is applied across the endcap electrodes, A
schematic of the experimental system is shown in Figure 2. The balance is mounted inside
a sealed chamber whose temperature is controlled to within L 0.05' C by using a constant
temperature water circulator, A air stream, selected from a dry and a humid stream,
enters through a port at the base of the chamber, and flows past a suspended droplet. The
humid air is generated by passing a dry air stream through a flask of heated water and
successively through West and Graham condensers. A second constant temperature water
circulator is used to control the dew point of the air leaving the chamber.

A tunable ring dye laser beam entering vertically through a hole in the bottom
electrode is used to illuminate the droplet. The wavelength of the laser beam can be varied
continuously In the range of 560 nm to 610 nm. The laser is computer controlled, has its
own waverneter with a resolution of I part in 107, and a linewidth less than 10"d nm. Two
fixed-position photo-multiplier tubes (PMT's) are arranged to measure the intensity of
light scattered by the droplet in the planes parallel and perpendicular to the plane of
polarization of the laser beam. Both PMT's are placed at about 0 = 90", and collect
scattered light with an acceptance angle of A# = 0.05". As discussed in the theory section,
the PMT in the plane parallel to the plane of polarization of the incident beam detects only
the TM mode resonances while the other PMT detects only TE mode resonances.
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Figure 2. A schematic of the experimental system

In a typical experiment, a DOP droplet was suspended into a steady stream of dry

air, and the laser was scanned from 17100 cm"1 to 17600 cm"'- with data being collectr.• PA
intervals of 5000 MHz (0,1667 cm-1) to establish the positions of sharp resonanr(5, and ý-i

approximate droplet size. The regions around the observed sharp resonances from both tbh

detectors were then rescanned with a data interval of 250 MHz (0.00833 cm') to determine

the positions of the resonances more accurately. After determining the resonance locations

in the dry air stream, a steady humid stream was introduced by switching off the dry

stream. The positions of the sharp resonances from each of the detectors were monitored

until the droplet growth due to the change in humidity terminated. After establishing new

positions for the resonances, the humid air str'eam was sw' Jhed off and dry air was

reintroduced. The entire process was repeated for various humidity levels.
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RESULTS AND DISCUSSIONS

In the present study, to estimate the amount of absorbed water in a droplet as a

function of the relative humidity, we needed to determine the absolute size and refractive

index of the droplet when exposed to dry air, and and then determine the change in 'the

droplet size and refractive index when the humidity of the surrounding air was altered. To

this purpose, the resonances of successive modes having the same order was first visually

identified from the patterns observed in the experimental intensity versus wavelength

spectra of the droplet. The approximate size corresponding to an assumed refractive index

was estimated from Eq.(12). Plots of the theoretical scattered intensity as a function of

the size parameter corresponding to the range of experimentally scanned wavenumbers

were compared with the experimental spectra from the two detectors. The process was
repeated for a number of refractive indices, and it was found that over a range of refractive

index both TE and TM mode experimental intensity spectra showcd good visual

agreements with the theoretically calculated spectra. In this range, a change in the

refractive index shifted the theoretically calculated spectra to higher or lower size range
without affecting the visual appearances as well as the mode and order numbers of the

individual resonances. This means that the accuracy with which size can be determined is

inter-related with the accuracy with which refractive index Is known. The visual matching

provides an acceptable range for the refractive index and a corresponding range for

the droplet size for the observed spectra.
.- Even though the theoretically

1 generated spectra for over a range of

0.40 - Mi imum sum of square errors wavelength independent refractive index
ait a 25.9035 it showed excellent visual agreements with

1 o.:the experimental spect-a, the positions
V of all the resonances in the observed

"spectra could not be aligned perfectly
•o0.20 with those calculated from the theory.

However, the positions of a number of

0o. io observed resonances over a small

wavenurnher range co... iligned with

,oo the positions of the theoretically
25.900 25.050 26.000 26.050 26,100

Droplet radium, 14ml
Figure 3. Sum of squared error in peak alignment am a
function of s i se 24



calculated resonances for a given refractive index. This indicated the existence of

dispersion, and we needed a model for dispersion for a comparison between the theory and

experiments. In this study we chose Cauchy dispersion formula given by

m = A + Su + CO4  (16)

where w is the wavenumber in vacuum. This formula can describe the dispersion of a

compound in the region where no absorption bands are present 14.

The problem now involves determination of four parameters, the droplet size and

the constants of the dispersion formula, from the experimental resonance positions. As

mentioned before the position of a theoretically computed resonance peak depends on the

refractive index, that is,

X -=(m) (17)

where x,/ is a resonance of nth mode and I th order. The form of f(m) is dictated either

by Eq.(9) for TM mode or Eq.(10) for TE mode. Equation (17) suggests that for an
assumed droplet size a, in the acceptable size ranige obtained from the visual matching, we

can align an observed resonance in the experimental spectrum of a given mode with the

corresponding peak in the theoretical spectrum of the same mode by adjusting the
refractive index. We followed this procedure to obtain a refractive index miobs

corresponding to the each observed resonating wavenumber, Wiobs. The set mi,ob8 versus

WMobs data points were fitted to Eq.(16) using a regression routine which provided the best

estimates for the parameters A,B and C. The resulting dispersion formula was then used,
with the assumed droplet size a, to calculate theoretical resonance peak positions wI,cal.

An estimate of error between the observed and calculated peak positions was obtained

using the following equation

N
-(a) , - Wotcai (18)l)

Aid

where N is the number of observed resonances. Using a computer program with 'i double

precision accuracy, this procedure was repeated by changing the dToplet size by ' A, ard a

minimum in the error estimate , was obtained. The minimum value of 0 is assumed to be
25



associated with the best determination of the droplet radius and its dispersion. The
function 0, is a smooth function of droplet radius and has only one minimum. Figure 3
shows the value of 0 as a function of radius for the resonances observed in the light
scattered by a DOP droplet. The minimum value of 0 for this droplet occurs at a droplet
radius a = 25.9935 jm, and the corresponding dispersion formula is given by

mDOP = 1.4627815 + 9.5402029x10"llw2 -4.88811802x10" 0W4  (19)

Theory ; Parallel to plane of polarization
6=90.30

9xperiment

L/)
C- Theory Perpenicular to plane of polarization(1) 0=91.18

Experiment

1.7100 17200 17300 17400 17500 17600

Wavenumber (cm-)

Figure 4. Comparison bi.tween experimental and t1heuretical spectra for a DOP droplet.

The theoretical intensity spectra calculated for the estimated size and dispersion
formula are compared with the experimental spectra in Figure 4. Except for the absence of
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very sharp resonances in the experimental spectra, the theoretical and experimental

spectra show excellent agreements. The absence of sharp resonances in the experimental
spectra is, as discussed before, due to the presence of slight imaginary component in the
refractive index which has been neglected from consideration in the present study. A

comparison between the theoretical and experimental resonance peak positions is given in

Table I. The results show that a maximum difference of 0.075 cm"1 between the observed

and calculated values of resonating wavenumbers. This difference corresponds to an error

of about 1 A in the estimate for the droplet radius.

Table I. A comparison between the observed and calculated peak positions

Observed resonance Calculated resonance Mode Order
peak position peak position number number

cm'. cm-"

16788.862 16788.833 281 21

16878,637 16878.712 287 21

16968.512 16968.506 289 21

17237.266 17237.298 295 21

17322.150 17322.120 293 22

17501.930 17501.767 297 22

16938.033 16937.971 288 21

17028.078 17028.095 290 21

17207.948 17207.971 294 21

17560.536 17560.577 298 22

17650.561 17650.576 300 22

After we introduced humid air into the chamber the droplet size increased due to

the absorption of water vapor, and as a consequence, the resonances of TE and TM modes
observed in the dry environment shifted to lower wavenumbers. We continuously

monitored one resonance peak of each mode as a function of time after each step change in
the humidity level. When the positions of these two peaks indicated a cessation of droplet
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growth, we determined the positions of a number of resonances of both modes. Figure 5

shows the shifts of a TE and a TM mode resonances of a droplet from dry environment to
when it reached equilibrium with the surrounding air having a relative humidity of 94%.

Dry air, a= 25.9935 jim To calculate the amount of absorbed water from
17207.98 17237.29 the observed shifts in the peak locations we used a

S method based on successive approximations of the

amount of water absorbed by the droplet. In each

TM Peak TE Peak step of the method, we assumed an amount of
_____s__________ water absorbed by the droplet and calculated
Water vapor at S.0.6•, a. 2,100411 jm theoretical peak shifts due to this addition of

- 17203.01 17232.27
water. The procedure was repeated till the
theoretical peak shifts matched with the
experimentally observed peak shifts, and an

TM Pack TE Pack estimate of the amount of absorbed water was
Iobtained. To implement this procedure we

I7 T..." Wa'v ..b om'" .i''1'••14 51assumed that the absorbed water and DOPWavwnumber, am-'

Figure 5. Shifts TE and TM resonance
peaks due to absorpt i on of w &ter.

underwent ideal volumetric mixing, and that the droplet was a single phase, homogeneous
solution of DOP and water. Furthermore, we assumed that the refractive index of a
homogeneous solution of DOP and water can be described by

m(w) = m DOP(w),vDOP + mH2 0 (w)vH2 0  (20)

where v and m are the volume fraction and pure component refractive index, respectively,
of the subscripted species. The following dispersion formula2 5 was used for water at 25' C

114N 1 0.43459060•

inxo(W) = (1.7602512 - &J17487x106 + 0.,434l,9•-0.-wj (21)

Assuming an initial value for the volume of water absorbed by the droplet, we

estimated the droplet size and its refractive index using Eq.(20). Using the size and
refractive index we calculated the theoretical shifts of the resonance peaks observed under a

humid environment, and compared the calcýilated sh.ift.s with the observed values.
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Successive approximations were then used to find the volume of water that when added to

the DOP droplet in dry environment results in a droplet radius and refractive index which

in turn cause the observed shifts of the resonance peaks. The resultant estimate of

absorbed water by this successive approximation scheme was always found to be unique

and unambiguous.

For the peak positions shown in Figure 5, the TM mode peak shifted by 4.97 cm"1

and the TE mode peak sldfted by 5.01 cm"1 when a pure 25.9935 Am radius DOP droplet

was exposed to a relative humidity of 94%. Both the peaks shifted by almost the same

wavenumbers, indicating that the droplet remained homogeneous after the exposure to the

humid air. Using the successive approximation procedure described above, we

estimated a radius change of 0.0113 pm, or the final droplet radius after equilibration with
0.020

water vapor at 94% relative humidity was
tsiJ a-29,8208 Mm 26,0048.

.5Figure 6 shown the calculated size change of a

droplet as a function of the saturation ratio of

water vapor. The results show the droplet size
[.010

increases monotonically am the saturation ratio
C of water vapor increases. The size increase of a

droplet due to the absorption at a given

saturation ratio depends on its initial size.

However, the equilibrium weight fraction of

water in a droplet at a given saturation ratio is
0,000 I

0.0 0.2 0.4 0.6 0.8 1.0 independent of its size. To
Saulrolion Rollo, S

Figure 6. Droplet size change as a function
waLer saturation ratio.

examine the reproducibility of our results we have plotted in Figure 7 the observed weight
fraction of water as a function of the saturation ratio of water vapor for three different

droplets having different initial radii. The results show that all three droplets have almost
identical water content at a given saturation ratio, thus, demonstrating the reproducibility

of the experimental data,
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0.0020 CONCLUSIONS

*....o=29,8268 m p
*"m-35.0845 jim

,a-22,9636 i mrn We have developed an experimental scheme by

-o.0o01"5 which TE and TM mode resonances can be
E recorded separately by two detectors located on

the planes parallel and perpendicular to the

o0.0010 , plane of polarization of the incident beam. We
"0 " have used the experimental system to obtain

intensity spectra from single suspend droplets.

o0.0005 By matching the shapes of the spectra with the

* theoretical spectra, and by aligning the observed

resonance peaks with theoretical peak positions,

0.0000 , d we have simultaneously determine the size of and

Soturaoion RolIo, S

Figure 7. Weight fraction of water in different.
droplets a i a function of saturation ratio.

the dispersion in a droplet. The results show that the absolute size can be detected with a

resolution of 1 nm, and the size change with a resolution of 1 A, From the observed shifts

of resonating wavelengths of TE and TM modes, we have detected minute amounts of

absorbed material in a droplet. The technique used in this study can also be used detect

the formation of a layer on the surface of a droplet. Results on adsorbed layers on single
particles will be presented in a future paper.
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INTRODUCTION

The dynamics of concentration fluctuations is of considerable basic and
practical interest. The visibility of an object viewed through aerosol plumes
is determined, for example, by the instantaneous value of the integral of the
concentration along the line of vision. As the instantaneous concentrations in
turbulent flows fluctuate strongly in time and space, one is interested in
estimates of the probability that instantaneous values exceed the mean or other
critical values, and in the time variation and intermittency of the concentration
fluctuations. The correlation of statistical properties of the concentration
fluctuations with those of the turbulencv in the flow is also of interest, as it
provides a better understanding of the dynamics of diffusing plumes and enables
prediction of diffusion characteristics when turbulence data are available. A
fast-response IR/CO2 system for measuring the fluctuations of IC, see Figure 1,
has been developed and is described in Poreh and Cermak [1,4]. The system has
been previously used to study the statistical properties of Vertically Integrated
Concentrations (VIC) across plumes diffusing in simulated atmospheric surface
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layers [3-5]. To advance understanding of turbulent diffusion of plumes, the
fluctuations of Integrated Concentrations (IC) along lines normal to a plume
diffusing in grid-generated turbulence, which is one of the simplest and most
studied turbulent flows, have been measured and analyzed. Initially, a grid with
relative porosity p - 0.54 was used to generate the turbulence. During the
analysis of the data it was suspected that the flow might have been affected by
possible coalescence of jets from neighboring openings in the grid. It was
therefore decided to repeat the measurements with a more porous grid; p - 0.64.
Differences between the two experimental series (I and II) were not large,
although the scatter of the data in Series I was larger. Only data from Series
II are presented in this paper.

THE EXPERIMENTAL SYSTEM AND PROCEDURES

The experiments were conducted in the Industrial Wind Tunnel at the Fluid
Dynamics and Diffusion Laboratory at Colorado State University. The experimental
system for measuring IC is schematically described in Figure 1. A plume of
carbon dioxide (CO ) mixed with helium (He), to produce a neutrally buoyant
mixture, was generated in the wind tunnel. The horizontal exit velocity of the
gas at the source was matched with the mean velocity in the wind tunnel, which
was set to approximately U - 2.5 wi/sec. A blackbidy was used to emit infrared
(IR) radiation toward a circular sapphire window (4 mm diameter) at the floor of
the wind tunnel. The IR beam crossed a ight chopper and a calibration chamber.
It was then focused on liquid nitrogen cooled Indium-Antimonide Photovoltaic IR
detector [InSb(PV)f , with a narrow-band (4.257 ±0.04 gm) optical filter. The
amplified AC signal from the detector and the reference frequency of the light
chopper were fed via a preamplifier to a lock-in amplifier which produced a DC
signal proportional to the intensity of the IR beam. The signal was then
filtered (fg t 160 Hz) and digitized at 600 samples/s. The response of the
system was determined using calibrated mixtures of CO2 in nitrogen, which filled
the calibration chamber. The distance of the source from the grid area in all
the experiments was constant, (xb/M e 20). A detailed description of the system
is presented in [7].

PRESENTATION AND ANALYSIS OF THE RESULTS

Mean and fluctuating dimensionless values of IC*(t) - ICM* + ic'*(t),
defined as IC* - IC U M/Q, where U is the mean velocity, M is the mesh size of
the grid, (7.62 cm), and Q is the strength ofthe source, were calculated from
the data. The lateral distrilutiops of ICM (y) were found to be Gaussian,
namely: 1CM* - ICM*(0) exp[-.(y) /(2a )J, where a(x) ij the local lateral 'length
parameter of the plume. Typical measurements of IC at different off-center
locations at a distapnce of x/M a 20 downwind of the source plotted versus the
dimensionless time Td i tU/M are shown in Figure 2. The measurements show that
values of IC> 0 were continuously recorded at the centerline of the plume,
whereas the appearance of an IC signal at off-center locations was intermittent.
Flure 3 shows the lateral distrilbutlon of the dimensionless rms/mean values of
IC . The data suggest that the IC* fluctuations at different distances from the
source are similar, in the sense that they are functions of y/o and almost
independent of x, at least in the range of the experiments: 20 < x/M < 120.

Many statistical characteristics of thp fluctuations are described by the

Probability Distribution Function (PDF) P(IC /ICM*), defined so that P(a) is
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equal to the probability that the relative instantaneous value IC*/ICM* > a.
Figure 4 shows the measured PDFs at different off-center locations at x/M = 20.
Figure 5 shows the measured PDFs along the centerline of the plume. Figures 6
and 7 show the measured PDFs at other values of y/a. Again, the data suggest an
approximate similarity of the relative fluctuations at the different distances,
although a small effect of the distance on the PDFs is noticed in Figure 5.

The value of P(O) indicates the intermittency -f of the signal, namely the
percentage of time for which IC - 0 was measured. The measured values of the
intermittency are presented in Figure 8. These values of I were corrected for
the effect of noise, as outlined in [6]. One sees that there is no
intermittency, I - 1, near the centerline of the plume, up to approximately y/a
-0.8.

Figure 9 shows the dimensionless spectral density distribution (SDD)

of the integrated concentrations, S* - S(n) U/[o~viTJ]), along the centerline
of the pluje plotted versus a dimensioriless frequency na/U, where S(n) is the SDD
of the IC fluctuations. The similarity of these dimensionless distributions
indicates that the time variation of the fluctuations at different distances is
scaled as a/U. A -5/3 inertial subrange behavior is observed at 0.5 < na/U <
1.5, followed by a -11/3 law up to na/U - S. A similar -5/3 law was observed in
SDD of point concentration measurements [8-11), except that it extended to higher
frequencies. It appears that the observed -11/3 law is the result of integrating
in-plume point concentration fluctuations at this higher frequency range.
Measured autocorrelations of the fluctuations are plotted in Figures 10 and 11.
The data confirm the conclusion that the time variation of the fluctuations is
scaled as a/U and suggest that periods of elevated concentrations at a given
distance will be of the order of o/U or smaller.

It should be stressed that the observed similarity of the IC fluctuations,
as well as that of the VIC fluctuations in plume diffusing in the ASL, is not
expected to extend indefinitely. At large distances from the source,
particularly where shear and surface roughness are present, the concentration
fluctuatiuns and the intermittent nature of the plume should decay and eventually
disappear. It is planned to substantiate these expectations experimentally.
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ABSTRACT
During experiments on electrocatalyzed dimerization of hydrocarbons, it was observed that

carbon fibers grow at the ends of corona wires during negative point-to-plane corona
discharges in hydrocarbon atmospheres. Under certain growth conditions, these fibers are
hollow tubes with smooth walls; under other growth conditions, the fibers are also hollow
tubes, but have rough surfaces. Scanning electron micrographs of these fibers are
discussed and possible applications for these fibers are noted.
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INTRODUCTION

There is a large literature on the formation of carbon filaments by catalytic
processes 1 10. Also some work has been done on fiber formation associated with electric
discharges. For example, Bacon reported1 1-13 formation of graphite whiskers in an arc
struck between graphite electrodes under a pressure of 92 atm. of argon at 3900 oc. More
recently, Kwong et a1l14 showed that hydrocarbon polymer whiskers, believed to be of
polyethylene type, were formed by hydrocarbon polymerization on drift chamber wires.

We report here observations of carbon fibers grown at the ends of corona wires
during negative point-to-plane corona discharges in hydrocarbon atmospheres, Under
certain growth conditions, these fibers are hollow tubes with smooth walls; under other
conditions, the fibers are also hollow tubes, but have rough and apparently self-similar
suffaces. First, the experimental system is described. Then some scanning electron
microscope (SEM) photographs of these fibers are presented and discussed.

EXPERIMENT
During studies of hydrocarbon reactions in negative discharges at

atmospheric pressure we observed that, during negative corona discharge, fibers grew
frotm the tips of the corona wires in a point-to plane discharge. Fig. I is a schematic
diagram of the experimental arrangement. Fibers grew from tips of corona wires of
tungsten, nickel, and platinum. Initially, tne end of the negative corona wire was
approximately 1.5 cm. from the plane anode and a visible corona developed at the wire tips
at around -3000 volts, when fibers commenced to grow at the rate of a few mm/sec; the
corona discharge was maintained thereafter from the growing fiber tip. In an alkane
atmosphere, we noted that electrically conductive fibers always grew from the tip of any
corona wire sustaining a corona discharge. During many of the experiments, various alkane
( n-C7- n-ClO) vapors in nitrogen carrier gas flowed with an average axial velocity of~-2.4
cnVsec through the reaction tube past the corona wires toward a plane aluminum anode. In
other experiments, pure methane (99.9%) flowed through the reaction tube. In all cases,
regardless of the alkane, either with or without flow, fibers always grew from the corona
wire tips so long as a corona discharge existed. If flow ceased, the corona current and fiber
growth rate tended to decrease after around a minute, apparently because of the
development of space charge. In all cases the pressure in the reaction tube was one
atmosphere.

At corona currents less than the order of 1. mA per wire (this obviously
depends on the point to rtlane distance, which was here -1 - 2 cm.), the growing fibers
were found to have smooth, uniform surfaces and to be stiff with noticeable elasticity.
Figs. 2-3 show a few examples of fibers grown under these conditions from n-heptane
vapor. Fig. 2 shows a branched fiber with a rough surface, grown at 2 niA in n-heptane
vapot, lying on a long smooth fiber which was grown at a current of around 1 mA. in n-
heptune vapor Close examination of the surface of the smooth fiber shows a seam toward
the left of the figure. Fig. 3 examines a break in one of the smooth fibers; Fig, 3 shows
that these fibers are hollow tubes, the one shown having a wall thickness somewhat greater
than 5g.im. Apparently, the interior surface is also smooth. Associated with the ends of
these smooth tubes, we have seen many small tubes truncated at both ends at angles of
from 120 to 300 with lengths of around 10 A.nm and diameters of a few 4im. The
mechanism of their formation remains to be, determined.

At currents in excess of the order of 2 mA per fiber, the fiber morphology
changes, and branching of the fiber can occur. The surface becomes rough with a pebble
texture. At corona currents in excess of I mA in methane, the fibers have the characteristic
pebble texture surfa,'e shown in Fig. 4. At the end of the fiber shown, branching has taken
place, with three distinct tubes projecting from the end. Fig. 5 shows in detail the surface
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of such fibers. It can be seen that the surface is not continuous, but that there are apparent
voids present. Further magnification of these surfaces reveals that they may he self- similar
and fractal. Fig. 6 shows a break in one of these rough surfaced fibers. Apparently, these
fibers are also hollow tubes with interior surfaces matching the exterior surfaces.

Several previous studies suggest chemical mechanisms in the fiber growth
process. Ion formation was investigated in a glow discharge in methane 1 5 . In this study,
highest ion intensities were measured in the region close to the cathode, Some of the
reactions with high cross-section were:

CH+ + CH4---> C2H2+ + H2 +H
CH2+ + CH4---> C2H3+ + H2+H

It seems likely that these species contribute to the formation of the graphite fibers, although
close to the growing fiber tip, we suggest that hydrogen would be removed. This is
consistent with conclusions from a recent study, ' of carbon cluster growth kinetics
indicating that a rapid mechanism exists for eliminating hydrogen from carbon clusters
formed by polymer ablation.

THEORY
The surface morphology of the fibers suggests the growth mechanism. The

morphologies displayed in Figs. 2,4-6 are similar to those found with ballistic growth
models and in thin films formed by sputtering 17 , This is consistent with the occurrence of
rough surfaces when corona currents are high, implying large electric fields and ballistic
trajectories for charged species depositing on the glowing fiber tip; at lower electric fields,
diffusive motion is more important and permits deposition of hydrocarbon species to take
p lace at preferred sites on the growing fier tip, thereby leading to smooth, closed surfaces.
It is significant that with either ballistic or diffusive deposition, hollow tubes are formed.

Models have ben proposed to account for the phenomena displayed here in
which growth takes place through diffusion as well as through ballistic trajectories for the
monomer responsible for solids formation. A model giving surfaces very similar to those
observed here has the general form:

02

vn(s) = f J(ct).n(s) dot + Da 2K(s)/s 2  (1)
01

where the two angles in limits of integration are the angles defining that part of a rough
surface that can be "seen" a molecule with a linear trajectory. Vn(S) is the velocity of the

growing surface and s is a surface position and n(s) defines the surface normal at s. J@() is
the flux of monomers at s. The second term on the r.h.s. accounts for the diffusive flux of
monomer.

Of course, a model of the growing fiber must allow for all the
electrodynamic and ionization processes occurring in a corona discharge. Assuiming
pseudo stationary conditions the set of equations required for a nmodel would be:

dav J. = - X(E).J. (2)
dlv J+ - ot(E) .J+ (3)

where the current vectors, J, are given in terms of the negative and positive charge carrier
densities, their corresponding mobilities and the electric field:

J.= n-eg -_E (4)
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J.= n+eg-+E (5)

the electric field is given by the relation:
di vE = 47e(n -n) (6)

+-
This set of equations is would be coupled to the ion balance equations for electron impact
ionization, recombination, etc. The identification of the charge carriers in a highly stressed
hydrocarbon atmosphere will require spectroscopic studies. The relation for the mobilities
is a complicated function of the field and must depend again on the properties of the charge
carriers.Therefore, additional experimental work would is needed for testing of a complete
model of the fiber growth process.

CONCLUSION
The fibers formed during the corona discharge have some interesting

properties, which could be exploited for a number of purposes. It has been noted 1that for
present liquid double layer capacitors to be more effective, major improvements are
necessary. For one, while the active carbon now used has high surface area, its electrical
conductivity is very low. Fibers grown by corona discharge obviously have high electrical
conductivity since the fibers sustain a corona discharge. The fibers grown at high currents
have a complex surface, as Figs. 4-6 show. Also, these fibers might be easily produced in
the presence of other chemical species, leading to fibers with interesting properties.
Additional work is necessary to determine the feasibility of producing these conductive
fibers using typical diesel fuels. By careful design, based on present observations, one
fiber(- 1OOpm x 0.1 ýtm) per second could be produced at power levels of - 10.4- 10-6
watts. An additional subject for further investigation is the growth of diamond-like fibers
in these discharges.
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Introductia

The practical difficulties in producing deagglomerated aerosol sprays of

fine particles expqoses the weakness in our understanding of the phenomena

involved in their transport. Particles of the order of 1 micron in size tend to be

cohesive, that i%, they often stick together so strongly that they cannot be aerated

to any extent. Unless they can be aerated they will not flow into a transport line

from a hopper to produce the deagglomerated aerosol sprays needed to obscure

tanks and armored vehicles from heat seeking missiles,

In this work, we report experiments with 1 mm glass particles where

surface forces (van der Waal's, electrostatic, etc,) do not play a significant role in

their transport through a pipe. In this way, we can focus on the purely

hydrodynamic aspects of the problem which are formidable in their own right.

The data will be analyzed in terms of the basic equations of dilute phase fluid

and particle flow in a vertical transport line. The two unknown parameters are

the interphase drag coefficient between the fluid and particles and the frictional
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effects of the flow at the pipe wall. Since our application is concerned with dilute

phase flow in small diameter lines, both drag forces and wall friction must be

taken into account in modeling the flow.

When the particles enter the transport line from the hopper in Figure 1,

they accelerate to a terminal steady flow condition. In the acceleration zone, the

voidage (or solids fraction) varies significantly and it is important to describe this

region properly for design purposes. For example there is a need to know the

solids fraction in the spray and the pressure at the inlet to the line.

Experimental

The experiments were performed in a 28.45 mm ID stainless steel line 5.49

m in length using 1.004 mm glass particles of density 2500 kg/m 3 in our

computer controlled transport line. This apparatus has been described in detail

(see aforementioned reference) and a schematic diagram is given in Fig. 1.

Air at a controlled temperature and pressure is fed into the feed hopper

through flowmeter F1 causing particles to be sucked into the line and to flow

through it. The cyclone at the top of the line separates the air and particles

leaving the line. The solids flowing through the line are collected and weighed to

obtain the solids flowrate. The air flowrate is the sum of the flowrates F1 + F2 -

F 3 measured by the meters.

Summary and Conclusions

The basic equations for dilute phase fluid and particle flow in a vertical

transport line have been analyzed and experimental data obtained using large,

glass particles to test the equations. We have found that

1. The solids flowrate is sensitive to the feeder gap above V2 in Figure 1.
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2. The acceleration zone is about 3 meters long for 1.004 mm glass particles.

In short pipelines, the flow may be accelerating and the drag coefficient

must be measured in each case at present. The non-acceleration drag

coefficients are in reasonable agreement with predictions.

3. Using the experimental pressure profile and a wall friction correlation, gas

velocity, particle velocity, pressure and drag coefficient have been

calculated by solving continuity and momentum equations in vertical dilute

phase flow.

4. The drag coefficient in the acceleration zone is not just a function of

voidage as in non-acceleration flow.

5, Importance of various hydrodynamic forces in the acceleration zone.

a. In small diameter pipes at high voidage, the wall friction is important,

b. The inertia force of the particle phase diminishes with distance from

inlet,

c. The inertia force of gas phase is negligible.

d. The gravitational force on the particle phase is the largest force.
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I. AEROSuL CHARACTEHIZA I ION METHODS
A. SPECTROSCOPY OF SINGLE PARTICLES AND AEROSOLS

AEROSOL ABSORPTION SPECTROSCOPY

J.D. Eversole
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A.J. Campillo, 11.-B. Lin and C. D. Merritt
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ABSTRAC1T
Continuous 2 to 14 micrometer absorption spectra of aerosols may be
obtained using photothermal interferometric detection in conjunction with
step-scanned Fourier Transforni Infrared spectrometry. Aerosol
absorption of broadband black body radiation is deduced by detecting
time-dependent thermally induced refractive index changes in the carrier
gas interferometrically. It may be possible to extended this same
approach to visible and ultra-violet wavelengths.
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The technical goal of this prograrn is to answer a "how" question regarding true

optical absorption of suspended aerosols. Scattering makes traditional extinction

measurements difficult to interpret. Therefore one must use some sort of indirect

thermal mechanism to determine when absorption occurs. The main physical

consequences of absorbed heat by a particle are changes in temperature, pressure and

density of the surrounding gas.

Interferometers offer extreme sensitivity in detection of refractive index changes.

For spherical particles the changes in surrounding gas refractive index and resulting

phase shift in the interferometer can be estimated as shown in Fig. 1. A schematic

detector arrangement is shown here with PZT driven mirror to maintain

intorferometer in quadrature for maximum sensitivity.

Such an interferometer detector arrangement has been utilized in prior work to

dete3ct trace amounts of ammonium sulfate aerosol in nitrogen carrier gas. The

P1 Detector Advantage : Disadvantage:
High Sensitivity, Noise Suseptatbility
Universality

Estimate of Induced Refractive Index Change: An = (.i..2w cpT Pa

Yields a net phase shift of: 2 1c L An/A

Laser

* IR
Sample Chopper

Figure I - Aerosol Absorption Detection Schematic
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interferonoter was foruied with a He-Ne laser and the IR source usad was a CA2

laser. By measw.,eing the interferometer phase shift signal for different available

CO laser wavelengths a minimum detectable concentration of about 9 mg/m

sulfate aerosol was determined. The advantage of a laser IR source is high

intensity, but its major disadvantage is lack of tuning or small tuning range. For

the current projoct we proposed using a broadband IR source of moderate intensity

similar to commercial FTIR instruments. Two design characteristics of such a

source not commercially available are: (1) step-scan approach to be comrm'tible with

aerosol thermal tirnic response, and (2) high intensity blackbody source. It should

be noted that unlike traditional extinction measurements, the interferometer

detector signal is directly proportional to IR intensity.

A prototype "high" intensity step-scan FTIR has been constructed and

calibration testi are presently being conducted. Figure 2 shows a schematic

Programmable
Step-Motor

MR

SIGNALOEl "i zP-

II

LC-NBS-- 
-B -'

monolithic I

I nterferometer -

PT 
E MPERA1 U

I ~CONTROLLER

Figure 2 • Schematic of FTIR source and interferometric detector

Cho3e



diagram of the complete instrumentation for aerosol absorption measurement. The

box indicated with the dashed line delineates the interferometric detector system,

while the optical elements exterior to the box represent the "FTIR" source. Figure 3

shows two "single beam" spectra computed from interferograms obtained by

attenuation measurement with an MR detector. The upper spectrurr is just through

normal atmosphere while the lower spectrum has a sample of tetrani i ronmethane gas

placed in the path .... three additional absorption dips an, seen supetimpo•ad on the

normal water and carbon dioxide structure. By taking the ratio of these two a•pectra

the normalized absorbance can be plotted as shown in Fig. 4. A similaz absorsance

spectrum taken on a comnmercial (rapid scan.) F'LIR is shown as an inset for

comparison which shows that the constructed PTIR is functioa•rg properly. These

spectra were obtained t a blakbody tfmperatur&e of only 2501, C. When the

temperature is increased to 9500 the total IR intensity wwi niasured to be 0.7 Watts

which will provide more than 0.3 W in the average outp'A beam of the FTIR

I U,

2000 1500 1000 S00

Wavynumber (cra.I)

Figure 3 . Single beam absorption spectra of FTIR source
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.01

2300 2000 1500 1000

Wavenumber (cm-1)
Figure 4 - Absorbance spectrum from ratio of spectra in Fig 8

Based on these measured 1R intensities, calculations were performed to

esitmate the sensitivity of the overall system for a hypothetical aerosol absorption

band having a peak absorbance of 5 X10-3 cm-1. Using the formulae similar to

those shown in Fig. 1 for estimating the interferometer phase shift and integrating

over the aerosol absorption band, an interferogram of the interferometer detector

was computed for different assumed absorption band widths. The expected

Fourier relations of higher peak and narrower width interferogram for broader

absorption were readily apparent, however, the significant point of these

calculations is that the magnitude of the phase shifts are on the oi, ,r of

mi~liradians which should be an acheivable sensitivity.

A prototype interferometer detector using a Mach-Zehndor configuratiun has

been constructed and ý,Ats capable of easily resolving a calibration phase shift

signal set at 30 mrads rms (tuned to 35 Hz). This calibration peak is 40 dB (two

orders of magnitude) above the noise floor, so that even without an optimal

experimeu~tal arrangement, it would appear that aerosol detection will be feasible.
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Figure 3 - JAMIN INTERFEROMETrER

An interferometer aerosol detec~tor is currently being constructed based on a

Jamin configuration (having only two distinct optical elements Figure 5 ) to

minimize mechanical noise. Actuel application of the Jamin interferometer

detector to measuring aerosol absorption requires good overlap of the Jamin probe

beam with the IR excitation beam. The ideal case with the two beams to be

colinear may not be realized due to the severe optical materials constraints, A

practicible optical arrangement will most likely be a shallow Ulngle crossed beam

geometry as shown in Figure 6. The figure is shown in two perspectives to clarify

that the IR beam and Jamin probe beam are in a plane orthogonal to the pio'ie of

the Jamin probe and reference beams.

TOP VIEW

orS~

U ~Probe Laser

Figure 6 - Jamin interferometer and IR beam geometry
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LASER ABLATION MASS SPECTROMETRY
OF LEVITE D MICROPARTICL

J. M. Dale, W. B. Whitten, and J. M. Ramsey
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831-6142
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Spectral Hole Burning", U.S. Dept. of Energy Contractors Workshop on Laset Spectroscopy,
Oak Ridge, TN, Oct. 1990.
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Based Persistent Spectral Hole Burning Memory", Opticm Lett., 16, 420 (1991).
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by Laser Ablation in an Ion Trap Mass Spectrometer', A-riutJ meeting of the ASIAS,
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F) W. B. Whitten, J. M. Ramsey, S. Arnold, and B. V. Bronk, "Single Molecule Detection Limits
in Levitated Microdroplets", Anal. Chem. 63,1027 (1991).

ABSTRACT

We are developing a technique to sample levitated microparticles by laser ablation or laser desorptlon
and analyze the resulting ions by ion trap mass spectrometry. Both the particle levitation and mass
analysis will be carried out within the same quadrupole trap. Experiments with laser ablation and
mass analysis of particles dropped through the trap will be described,

Charged microparticles can be levitated in a three-dimensional quadrupole by a combination of AC
and DC electric fields (1) or by a DC field with optical feedback btabilization (2). With different
voltage and frequency conditions, the same quadrupole can be used to confine ions and to measure
their mass to charge ratio (3). We are developing techniques to produce atomic or molecular ions
by laser ablation or desorption from levitated microparticles and mass analyze the ions !n the
quadrupole trap. These techniques will complement out work on fluorescence spectroscopy of
levitated microparticles and will permit the characcrization of a single microparticle by a combination
of optical methods and mass spectrometry.
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Our initial experiments have been made on particles falling through the trap to test these ideas with
less complicated instrumentation. Light scattcred by a falling particle from a weak HeNc laser beam
triggers a Nd-YAG laser. A 10-ns pulse of 532-nm light is focused on the particle, ablating and
ionizing a portion of its surface. The resulting ions are trapped and mass analyzed by conventional
ion trap techniques (3). We have obtained representative mass spectra of quaternary alkylammonium
halides (4) on the surface of silicon carbide particles in this way. A typical mass spectrum, in this case
of tetraphenyl phosphonium bromide, is shown in Fig. 1. The spectrum shows the cation resulting
from los of bromine along with lines from the loss of 2 and 3 phenyl or benzene groups. Sodium
and potassium appear to be present as well as smaller molecular fragments. Our present sensitivity
is such that a useful mass spectrum can be obtained from a fraction of a monolayer of analyte on a
100 pm SiC particle.

Measurements have also been made on metallic particles. A spectrum obtained from a niobium
particle is shown in Fig. 2. Niobium has only one stable isotope, 93 amu. The signal observed at
other masses from 92 to 96 amu is presumably due to mass 93 ions that were poorly resolved. A
trace of iron at mass 56 arnu is also observed.
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Fig. I Mass spectrum of luser-desorbed tetraphenyl phosphonium bromide an a silicon carbide
particle.
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Fig. 2 Mass spectrum of laser-ablated niobium particle.
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Application of Factor Analysis-Rank Annihilation Technique to
Interpretation of Aerosol F1uoresoenoe

D.L. Rosen and J. B. Gillespie
U.S. Army Atmospheric Sciences Laboratory

U.S. Army Laboratory Command
Whitq Sands Missile Range, NM 88002-5501, USA

I. Introduction

Laser induced fluorescence (LIF) is sometimes used for
lidar beoause LIF spectra contain information about chemical
composition. Fluorescence lidar has been limited because the
LIF spectra of most constituents in the troposphere are very
broad and devoid of line structure. The LIF spectra of aerosol
particles do not have line structure because of inhomogeneots
broadening by vibrational states. Sharp fluorescence lines from
gases in the troposphere are quenched by ooillisional de-
excitation. The broad LIF spectra from an atmospheric
constituent overlaps LIP spectra from other constituents and the
spectrum of sky radiance. An atmospheric constituent is not
easily distinguished from the background spectra because of this
overlap.

Rank annihilation-factor analysis (RAFAJ is a set of
algorithms for interpreting broad fluorescence spectra in complex
mixtures, RAFA compares the excitation-emission matrix (EEM) of
an unknown to the EEM of a calibrant. An EEM is a matrix
containing the spectral intensity as a function of excitation
wavelength and emission wavelength. RAFA can only detect the ESM
of a calibrant within the EEM of a complex mixture under the
following conditions. First, the fluorescence of the various
components of the mixture should add up linearly. Second, the
EEM can only be analyzed if both the number of excitation and
emission wavelengths are greater than the number of fluorescing
compounds in the mixture. Many more excitation wavelengths than
fluorescing compounds may be necessary due to noise and
uniqueness problems. This means that a wavelength tunable
excitation source is necessary for RAFA.

This paper describes a computer simulation of a RAFA
detection algorithm applied a hypothetical fluorescence lidar
return with noise and sky radianoe. Detection algorithms
determine whether or not the concentration of the oalibrant in an



2
unknown mixture is zero. Previoua simulations done by us have
analyzed RAFA algorithms that can calculate only nonzero
concentrations of the calibrant in the unknown mixture from a
fluorescence lidar return. Noise and sky radiance were not
included in our previous studies.

If the spectra of the components are both nonoverlapping
and free of random noise, RAFA requires a oalibrant EEM only from
the compound of interest. This suggests that RAFA may be useful
in remote sensing where an unknown background may also be
fluorescing. However, real lidar measurements often contain
large amounts of random noise and overlap. A priori information
is necessary to eliminate random noise, We will show that
detection by RAFA may require some knowledge of the fluorescence
background in order to set a rejection level, A detailed
knowledge of the fluorescence background may not be necessary if
one has used the worst possible fluorescence background to set
the rejection level. We consider an aerosol, fly ash, as the
source of the fluoresoence background in this paper. RAFA can
also be applied to analyze a compound of interest in an aerosol.

II. Theory

The theory behind the simulation is desoribed in two
parts: the RAFA detection algorithm and the UVTRAN model for
lidar.

A. Detection Algorlthm

We used the overlap index method3 to determine the
presence or absence of the oalibrant compound in the mixture.
The overlap index method assumes that the oalibrant EEM is
bilinear, i,e,, the emission spectrum of the calibrant is
independent of excitation wavelength. Pure compounds generally
have bilinear EEM because of rapid nonradiative transitions
within a molecule, The overlap index method will not work if the
EEM of the calibrant is linearly dependent with a aet of EEM from
other components in the unknown.

We now define the overlap index, p. In the following
dinoussion, the row vectors of an EEM correspond to emission
spectra and the column vectors of an EEM correspond to excitation
spectra, The overlap index method requires a bilinear oalibrant
EEM, N, and the EEM, D, from an unknown mixture. Then,

P ui'x12  v 2 ( 1
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where x is a normalized excitation spentrum of tho calibrant, y
is a normalized emission spectrum from the calibrant, i and j are
a ýubscrjpts designating the signifioan• nonzero eigenvalues of
DD or D D, u is an elgenvector of DD assooiat~d with a
significant eikenvalue, v is an elgenvector of D D associated
with a significant eigenv lue, a~d r is the nit-Mber of significant
nonzero eigenvalues of DD and 0 D.

The value of r is necessary for 6 &.,m 1atýig a precise
value ot p. Underestimating r generates a '.ameriial error in p
while overestimating r causes p to be sensitive to noise an$ 5
experimental error. Algorithms for finding r are available
but were not Included in this study. We simulated EEM whose
values of r were known, modified these EEM using a lidar model
that accounted for atmospheric effects, and then used the
unmodified values of r in our calculations of p.

The overlap index, p, is used to compare spectra in a
similar way to correlation functions. The overlap index
algorithm will work under certain conditions even in the presence
of unknown fluorescing spectra, where correlation functions can
not work, If p is zero, the calibrant 9EM and the unknown EEM
are completely uncorrclated and the calibrant is not part of the
unknown mixture, If p is one, the oalibrant EEM and the unknown
SEM are completely correlated and the oalibrant may be part of
the mixture. A detection criterion is necessary if p is between
zero and one. We will propose a possible detection criterion in
the Discussion section. However, this criterion requires partial
knowledge of the background fluorescence.

B. Lidar Model

UVTRAN is an ultraviolet and visible wavelength
atmospheri propagation model recently reported by Pstterson and
Gillespie. UVTRAN calculates the atmospheric extinction co-
efficient, optical atmospheric trahsmisslon, sky radiance, and
the total lidar signal for backscatter and fluorescence. Only
calculations for the atmospheric extinction co-efficient have
been previcuoly described, The other parts of the model are
currently being documented and verified.

A modified version of UVTRAN simulated the fluorescence
lidar return signals. The new version includes RAFA analysis and
photon counting (i,e,, shot) noise. The calculation of photon
noise required the detector integration time and fluorescence
lifetime as input parameters. The new model enters the
concentration and laboratory EEM of the unknown mixture, the
excitation and emission spectrum of the calibrant, the
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visibility, desired options, and other parameters. The program
calculates fluorescence lidar returns. The overlap index is then
calculated from the fluorescence lidar return as a function of
distance or detection integration time.

The new model has several options concerning sky radiance
and noise, The overlap index can be calculated with or without
photon noise, and with or without sky radiance. Typical sky
radiance can be calculated for night, overcast day, or clear day.
The calculations shown are for night time sky radiance.

The fluorescence detector is assumed to be a shot noise
limited photon counter. The photon detector has a shutter. The
detector has a temporal window over which the detector counts
photons. With photon noise, the mean collection rate of photons
is oaloulated and multiplied by the detector integration time.
The photon count is assumed Poisson distributed about the mean
number of photons, Once the random number is generated, the mean
sky radtance signal was subtracted from the noisy signal.

IIl. Computer Simulation

The following scenario was,chosen for our simulation.
The fluorescence lidar was being used in the troposphere to
detect the presence or absence of nitrogen dioxide, NO , in a
plume which contained carbon particles. The overlap iLdex for an
NO calibrant was calculated using simulated lidar returns from
aerosol plumes with and without NO as the unknown EEM. The
overlap index for unknowns with ang without NO, were compared,
The computer simulation will be described in three parts:
parameters for the NO vapor, ptrameters for the carbon
particles, and parameiers for the fluorescence lidar apparatus.

I

We used emission 6peotrý of NO, at 0.1 Tort pressure
measured by Sakuria and Brolda. The •mission spectrum has two
oompone,-ts: a broad band cooLponent and a narrow line component.
The narrow band component is far more easily quenched at higher
pressures than the broad band component. The simulation
therefore did not include the sharp lines.

9O24Our 2simulation used a peak fluorescence cross section of
9X10 cm and a fluorescence decay time of 1.65 nseo. These
values were estimated for atmospheric pressure by multiplying the
low pressure values by the quenching factor. The flwres~enoe
cross section without quenching (peak value of 3xiO om ) and
the quenching factor (3xly -) at atmospheric pressure o' NO were
taken from Measures book, The fluorescence lifetime gor N 2  of
55 ps was measured without quenching by Keyser eU. al.
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We chose Kansas City fly ash studied by Tucker et. al.

as the background fluorescence source. Fly ash and NO2 are
often emitted together from smoke stacks. This is only one of
several possible fluorescence backgrounds because the
fluorescence spectra of fly ash changes with the source.

The emission spectra of NO and fly ash was measured 'rOni
journal illustrations using a digifizer. The excitation spe,ýtrum
in the literature was incomplete in the literature for both NO2
and fly ash. It was necessary to interpolate the excitation
spectrum from only a few points. The interpolation was done in
such a way that the EEM of NO 2and the EEM of fly ash were cach
bilinear (i.e., r-1 for each). The fly ash EEM was definitely
not bilinear out to 355 nm in the literature, but the simulation
was done over a much narrower range of' excitation wavelengths.

The fluorescence lidar EEM was a linear combination of
the NO. and the fly ash EEM. Emission spectra of the NO2 , the
fly asý, and the mixture at one excitation wavelength are shown
in Fig. 1. A concentration for NO2 of 100 ppb was chosen for the
unknown because 4 was the maximum concentration measured by
Gelbache et, al. in the ambient atmosphere of a city. The
concentration of the fly ash was chosen so the peak fluorescence
of fly ash was twice the peak fluorescence of NO2 2 which was also
consistent with measurements by Oelbwaohs et. al. The EEM of
the unknown from which the fluorescence lidar returns were
generated had two components (i.e., r-2). For caloulational
ease, the fluorescence lifetimes of the NO2 and the fly ash were
assumed to be the same.

Our hypothetical lidar is now described. The lidar uses
three excitation lines: 457.9 nm, 488.0 nm, and 514.5 nm. The
energy of each pulse is 0 .1 J3 and each pulse is much shorter than
either the fluorescence lifetime or the detector integration
times. Other parameters of the detector are given in Table 1.
The receiver field of view was assumed perfently matched with the
laser divergence. The emission spectra were collected from 400
nm tc 750 nm in 5 nm increments. Elastic scatter was not
included as there are methods of tilteriir it out of the
fluorescence lidar return. The receiver was shot noise limited,
The lidar path was horizontal through an atmosphere vith a 23 km
visibility.

We averaged the signal over 6000 pulses per excitation
wavelength for each trial. Adeq.ate lidar returns with sKy
radiance and photon noise could not be gathered with a much
smaller number of pulses. This number is far too large for many
applications of fluorescence lidar. However, fluorescence lidar
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may býdposqible for gases whoce cross section is much larger than
9X10 cm or whose concentration is much larger than 100 ppb
because fewer pulses would be necessary. The statistical average
and standard deviation of the overlap index was calculated from
17 trials. The error bars were defined as plus or minus a
standard deviation.

IV. Results and Discussion

A threshold (i.e., rejection level) for the overlap index
is required to determine whether a compound is present or absent.
We determined one possible criterion as follows. We assumed that
the fly ash background we used was either very typical or worse
than the actual background. For example, aerosols can be
monitored by independent techniques. The RAFA analysis would
then be discarded if the aevosol concentration was too high. A
reasonable threshold under these conditions would be between the
two curves.

The following numerical definition of threshold was
tested. Tho overlap indices with no sky radiance are clearly
separable out to 10 km for the mixture of NO and fly ash (p )
and the fly ash background alone (p ). A si~ght dependence Tn
distanoe was observed for both p a~d p , so a threshold, Pt,that
was also dependent on distanoe w~s dofiýed. The threshold, Pt,
was defined as the average of m and Pb' i.e.,

P m + Pb 
(2)

2

Any p above pt indicatee the presence of N(, and any p
below p indicates the absence of NO This criterion presumes
that thý user has anticipated the worse fluorescence background
interferent possible in a given situation.

The simulation was done with photon countirng (i.e., shot)
nolso and night time sky radiance. The mean sky radiance was
subtracted from the signal because methods of subtracting a
constant background are available to experimenters. The shot
noise associated with sky radiance was not subtracted from the
signal becauso shot noise ic random. Actual sky radiance will
vary greatly under field conaitions. The values of sky radiance
used here aze crode approximations of a typical mnnnlit night.

The noise from the sky radiance severelv limited the
ability of the fluorescence lidar to dIsttn8g"ish between the
presence and absence of NO The functional dependence of the
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average overlap index on .itstance is 9hown in Figure ? for night
time sky radiance, The overlap indices with and wirhout NO2 are
indistinguishable for distances greater than 400 m.

There are conditions under which the sky radiance would
be In3ignificant, The functional dependence of the average
overlap Index with the NO2 calitrartt are shown in Figure 3 for
the no sky radiance ard a shot noise limited signal. The overlap
indices with and without NO do not intersect for distances less
than 3 km. This is a vast ?mprovement over the night time sky
radiance situation.

Simulations done under day light conditions showed that
shot noise from day time sky radiance reduced the overlap index
to zero with and without NO for, all reasonable distances.

V. Conclusions

Photon counting noise with sky radiance severely limits
the ability to detect NO2 . Sky radiance with noise limits the
range of the fluorescence lidar, and limits fluorescence lidar to
night time applications. The ph'iton nol.e from the sky radlanoe
is a larger problem than photon noise from the fluorescence al2one
because the sky radiance is stronger than the fluorescence
signal. These limitations are fundamental to lidar and not a
limitation of the factor analysis-rank annihilation technique
alone.

The noise from sky radiance problem may make the
detection of NO2 impractical. Th2 large number, 6000, of' pulses
per excitation wavelength required for jignal averaging would
occupy a large amount of the observers time. The experimenter
would have to wait 60 j per excitation wavelength at a very high
repetition rate of 100 Hz. This would not be a real time
m.easurement for many applications. Fluorebcence lidar may be
practical for atmospheric conatituents with much higher
fluorescence cross sections or concentrat ions than w:as used in
our simul&tion.

These calculations are snow that RAFA r'ould be limited at
large distances by shot noise and sky radiance. rhe sky radiance
used in this study was a crude cruoe approximation. better
evaiuations of the fluorescence lidar technique will require
precise sky radiance data under the conditions of the
applicat ion.

The fluorescence lidar apparatus that we simulated is
feasible but would be very marginal, Our fluorescence lidar
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model is being usel to invastigate the effectiveness of possibie
improvements. Narrowing the receiver field of view could reduce
the sky radiance noise. However, the 2 mrad used in our
simulation is already too narrow to easily achieve. Using an
excitation source with a greater the number of lines would
enable the lidar to discriminate NO from even more complex
fluorescence backgrounds than the simulated fly ash. In future
studies, we will evaluate applications for fluorescence lidar
using better data on fluorescence spectra, cross sections, and
sky radiance.
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Table 1: Lidar pa:,ameters

1. Laser pulse energy -- 0.1 J
2. Number pulses -- 6000
3. Receiver Mirror Diameter -- 0.6 m
4. Receiver field of view -- 2 mrad
5. Spectral Bandwidth of System -- 2.5 nm
6. Transmitter Efficiency --- 0,55

T. Receiver Efficiency 0.54
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ABSTRACT

We show both theoretically and experimentally that a random distribution of

spherical micropartioles may be used as a spectral hole burning memory. This

Microparticle Hole Burning Memory, which can be both written and read at room
temperature, is a direct consequence of the properties of morphology

dependent resonances of micropartioles.

present address, Dept. of Applied Physics, Columbia University
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The narrow electromagnetic morphologically dependent

resonanoes(MDR's) which are go distinctly present In single particle
experiments are virtually washed out in experiments on polydispersed

distributions of particles. This is even the case for the narrowly distributed

particles produced in space, "space beads".1 In this letter we present a means

for encoding information into such a distribution of particles which takes direct

advantage of the narrow MDFR's. This procedure known as micropartiole hole
burning, to our knowledge, is the first example of the use of a collection of

mioroparticles as a medium for persistent spectral hole burning. Unlike all other

condensed matter hole burning media the rmicroparticle hole burning medium

does not have to be either written or read at cryogenic temperature 2; It

operates at room temperature.

The ptinoiple of the Micropartiole Hole Burning Memory(MHB) Is
based on the fact that a given MDR occurs at a wavelength in proportion to the

particle's size(with the refractive index held constant). Thus a collection of

particles having a distribution of sizes gives rise to a photophysical response

which is heterogeneous. A good example of this effect, as we will see, occurs

for the case of the fluorescence excitation spectrum taken on an ensemble of

dyed microspheres. Such a spectrum is composed of the sum of spectra from

individual particles, 3 each with resonances occuring at different wavelengths.

Thus the normal homogeneously broadened excitation spectrum of d typical

dye at room temperature is found to become Inhomogeneous for

measurements on an ensemble of dyed particles. Memory may be imprinted

by a laser, for example, by preferentially photolyzing molecules within particles

having an MDR at resonance with the laser wavelength. The memory may be

read out by taking the fluorescence excitation spectrum; photolysis causes

fluorescence to be reduced thus putting holes into the excitation spectrum. In

what follows we review important aspects of MDR's, construct a simple model

for understanding microparticle hole burning, and present results of

experiments which confirm our basic idea.
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A Spherical partlole of radius a irradiated by a plane wave of

wavelength A• exhibits an enhanced Internal field when its optical ali.e X

(ciroumferenoe to innldent wavelength ratio, X-27raA) corresponds to a

resonant condition. These resonanc,3 are distinguished by their polarizatlon

P (i.e., TE or TM ), angular momentum L, and radial order number a (i.e. the

number of nodes of the wavefunction Inside the particle). A general mode io
labelled Pt,g. The "free spectral range" In X betwwen Pt,f, &nd Pt +1,9 is

dependent chiefly on the refractive index, and oonsequently the wavelength
difference between Pt., and Pt +1,s . W Is inversely proportional to X and

proportional to X (i.e. the larger the particle size the closer the spaoing in

wavelength near a given wavelength). 4

TE 08. nm)
"121I32
10.

•IS "M (588.1 Im)

10 'I'M (509g 3hnn

20

Fig.1.Slmulated normal random distribution of 104 polystyrene particles
having a mean radius of 1.44 pm and a standard deviation of 1% of this
size. The arrows indicate the parts of the distribution in resonance with
a laser at 588.3nm.
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In Fig. I we show a simulated normal random distribution 5 of 104

polystyrene particles having a mean radius <a> of 1.44 pm and a standard
deviation to average size ratio oa/<a> of 0.01. The arrows Indicate the sizes of

particles within the distribution which have MDR's in resonance at 588.3nm.

Our goal is to model the fluorescence excitation spectrum of this ensemble.

Since fluorescence Is incoherent, an excitation spectrum for the distribution in

Fig. 1 may be constructed by adding the Mie absorption of each of the

particles. The curve in Fig.2a is the Mle absorption of a single particle at the

center of the distribution (a-<ca>-1.44pm) using a refractive index of 1.69 +

10"61.

(b)

0.G
'rIE

X Soo•

?eo $82 5;4 586 se6 590 52 9 596 598 600

Fig. 2. (a) Simulated fluorescence exoltaticn spectrum for a particle at the
center of the distribution, a-1.44p,; (b) Simulated fluoressenoe
excitation spectrum for the particle distribution in Fig.1.

The resonant features are clear, As the size of the particle changes the

resonances shift in aocordance with our previous discussion. The sum of the

absorption from all 104 particles in Fig.1 is shown In Fig,2b . We see that the
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collective fluoresoence(Flg.2b) has lost virtually all of the detail present in the

single particle spectrum. Now we suppose that an intense laser is projected

onto the distribution at e wavelength 7Aw of 688.3nm. Although the rate of

photolysis is expected to vary spatially due to nonuniform absorption, for

simplicty we assume that this rate Is proportional to the power absorbed by the

entire particle. As a oonsequence the fluorescence will fall exponentially with

exposure time. Using this reope the initial fluorescence from aoh particle of

size a Is multiplied by F(a) w exp.IBO(a)I, with G(a) -

&2Qa(2i7Ttw)/<&>2Qa(27r<a>/?Xw), where r (X)Is the Mi. absorption efficiency

at optical size X, and (3 is a parameter which is proportional the incident

Intensity of the photolyzing light, the quantum efficiency for photolysis and

time. Fig.3 shows the fluorescence excitation spectra before (B-0) and after(B

- 1 or 20) the simulated photolysis. As one can plainly see, narrow hulas are

predicted which are clearly distinct from the noise due to number fluctuations.

It should be noted that these holes become broadened beyond the width of

the TE 20,1 resonance as B3 increases,

I us

I

0 9

0- 3.20, 2.5X

0,7 I "Wn•te"

Wa"Iesngth

580 302 IW 5M too 5" 2 5 94 M5%6 S 600

Wmvu iungUl(iun'.

Fig.3. Fluorescence excitation spectra before(B=O) and after two simulated
burns (3=1 and 20) on the particle distribution in Fig.1.
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Although all three sizes Indicated in Fig.1 contribute to the hole at
the "write" wavelength Xw (i.e.588.3nm), the feature at 698nm in Fig,3 Is

principally contributed to by particles near the oenter of the distribution,

a,1 .44pm. The fluorescence of these particles are bleached by stimulating their
TE 20'1 resonance. Once bleached the particles will not fluoresce when probed

at any of their other resonances. The feature at 698nm in Fig.3 Is due in fact to
the TM19, I resonance of particles near 1,44lpm. Suoh a feature will be termed

subsidiary since it owes its mixistenoe to only one of the three groupu of partloles.

In this respest it Is Interesting to note that the model predicts that such

subsidiaries become less distinct as the distribution becomes broader and

contains more resonances which can be stimulated by the "write" wavelength
(e.g, a distribution such that ca/<a> > > AX-X). All particles In resonance at Nw

contribute to the hole at this wavelength, however, other resonances (I.e. the
subsidiary resonances) of these particles are separated from ,w by an amount

which depends distinctly on their individual sizes. Consequently the subsidiary

resonances from different particles in the ensemrnble will not be in register; these

subsidiaries become muted in comparison to the hole at Xw. In the experiments

to follow we have chosen just stuoh a distribution.

Our experiments were performed on dyed latex particles (<a>

-12.1 urn, -=a 2.2 pMm) on a cover glass slide. Latex particles dried from a

hydrosol were dyed with Nile red by stirring and sonicating the particles in a
10- 4 M xylene solution. Following centrifugation and decanting, a 1% Triton-X

solution was added to the test tube o'ntaining the particles. After further stirring

centrifugation and deoanting, water was added. The contents of the test tube

were then agitated by stirring and sonicating. This resulted in a resuspension of

the now dyed hydrosol particles. A drop of this hydrosol was placed on a cover

glass slide. After air diying, this slide was placed on the stage of a fluorescence

microscope and irradiated from above by a CW dye laser beam at 80o from the

vertical. Fluorescence was isolated by a filters (Corning CS 2.59 and CS 2.60)
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and detected by a cooled photomultiplier. The fluoresoence from approximately

2000 particles in an area of 1mm 2 were viewed by this detector.

I AO*47 05.47

~~ 4 t.4

5iS 570 515$ 500

Wavelen gth(nm)

Fig.4, Fluorescence excitation spectra taken before(a) and after(b) projecting a
relatively intense laser on the sample at 572.3nm.

Fig.4a shows the fluorescence excitation spectrum recorded on the

sample at an Incident intensity of 0.4 mW/om 2 over a period of 10 minutes.

Following this scan the sample was Irradiated for 8 minutes at 40W/cm 2 with the

wavelength fixed at 572.3nm. Fig.4b shows the resulting excitation spectrum

taken under the same conditions as in Flg.4a. The overall reduction in

luminescence of the scan in Fig.4b in comparison with Fig.4a Is due to

photolysis of the Nile red dye. The "hole" in the spectrum in Fig.4b at 572.3nm

Is apparent. The lack of an apparent subsidiary hole is consistent with our model,

The breadth of the hole is considerably wider than the width of a narrow

resonance for particles of this size, However, this effect is similar to the effect

which occurs in the model distribution for large B.
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Although our model dijoloses the basic idea behind MHB, there are

many theoretical questions to be answered in connection with this new memory

system:

(1)How does one Include the effects of the substrate? (2)What Is the effect of

the proximity of one particle to another?(i.e., many particles touch in our

experiments) (3) What 16 the consequence of a radial dependence In the

distribution of dye within the particles? With respect to the first question, our

own measurements, and the measurements of others8 indicate that resonances

remain intact on a glass surface, The second queetion is much harder to answer,

however recent calculation on light scattering from bimpheres suggest an

alteration in spectra for two identical particles In contact. However, even in this

extreme mase resonances are still predicted. 7

MHB may have interes'ing applications not only as a memory device

but also in the diagnostics of particle size distributions. As we have already

pointed out the degree to which stibsidlary features are present is controlled by
tho ratio of cra/a> to A)A.

Both theoretio•al questionw and the possihle use of MHB as a tool for

evaluating size distributions are currently under study in our laboratories.

We would like to acknowledge the assistance of John H, Blalock for

making the optical measurement. Research at Oak Ridge was supported by the

U.S. Department of Energy, Office of Energy Research, under contract DE-

ACOS-840R21400 with Martin Marietta Energy Systems, Inc. S. Arnold and C.T.

Liu were cooperatively supported by the NSF and the U.S. Army Chemical

Research CIevelopmerit and Engineering Center(under ATM-89- 175871) and

by a oontract from the Joint Services Electronics Program.

80



References

I.T.R. Lettheri and E. Marx, Appl. Opt.Zi 4326(l 98U).

2.W.E. Moerner, ed., Pertent Spectral Hole Burning: Sclence and

App/icatons(Springer-Verlag, Berlin, 1988)
3.L.M. Foian and S. Arnold, Opt. Lett. 1A 1 (1988).
4.S.C. Hill and R.E. Benner, in Opdcai Eflocts Aaosated with Small Par•de,

P.W. Barber and R.K. Chang, eds.(World Scientific, Teaneck, N. J., 1988),

Chap.1.
6. M. Kalos and Whitlock, Monte Carlo Methods, Vol.!, (John Wiley and Sons,

New York, 1986), P.47
6. S.C. Hill, R.E. Benner, C.K. Rushforth, and P.R. Conwell, Appl. Opt. 2U

1880(1984).
1. K.A. Fuller, Appl. Opt.2.,3788(1 989).

81



BLANK

812



B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING & INVERSION

CONSTRAINE'I) LINEAR INVERSION OF LIGHT SCATTERED FROM NON-

ABSORBING, NEARLY IDENTICAL SPHERICAL PARTICLES FOR SIZE AND

REAL REFRACTIVE INDEX

Matthew R. Jones**
Bill P. Curry*

M. Quinn Brewster**

*Argonne National Laboratory
9700 South Cass Avenue

Argonne, I1. 60439

"**University of Illinois at Urbana-Champaign
Department of Mechanical and Industrial Engineering

140 Mechanical Engineering Building
1206 West Green Street

Urbana, 11. 61801

The Fredholm equation of the first kind representing the light scaUering by a narrow log normal distribution
of non-absorbing aerosol particles is inverted to obtain the p:.ýticle size distribution function and real
refractive index. The deconvolution technique is a generalization of the process previously developed to
obtain particle size distribution functions when the optical properties of the particles are known. The
solution is obtained by expanding the scattering kernels and the particle size distribution function as linear
combinations of Schmidt-Hilbert eigenfunctions. The orthogonality properties of the Schmidt-lHilbert
eigenfunctions and of thr eigenvectors of the kernel covariance matrix are employed to obtain a solution
which minimizes the residual errors subject to a trial function constraint. Application of the trial function
constraint requires prior knowledge of the type of distribution. The inversion process is described briefly,
and the results from the inversion of several synthetic data sets are presented. It is anticipated that future
improvements in the technique will result in a quantitative analysis of the error in the size distribution and
in the value obtained for the real refractive index. Optimization of the inputs should lead to a reduction in
the number of measurements required for a successful inversion. Also, it is anticipated that further
generalization will allow for the retrieval of the imaginary part of the refractive index.

RECENT PUBLICATIONS
A) B. P. Curry, "Inversion of Single Size Particle Scattering Data by Use of a
Constrained Eigenfunction Expansion" , Proceedings of the 1990 CRDEC
Scientific Conference on Obscuration and Aerosol Research, In Preparation.

INTRODUCTION

Measurements of the light scattered by a particle provide an indirect way of

detemiining the particle's properties. Techniques for solving inverse scattering problems

are of great interest due to the wide range of potential applications in areas as diverse as

combustion, meteorology, geology, and bioengineering. This paper describes a

generalization of the constrained eigenfunction method developed by Curryl to solve the

inverse scattering problem when the optik:.d properties of the scatterers are known. The

methox described here retrieves the particle size distribution function and the real part of the
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refractive index by deconvolving the synthetic measurements of light scattered from a

narrow log normal distribution of non-absorbing aerosol particles. A brief description of

the technique is followed by the presentation of results from several inversions of synthetic

data sets. A full mathematical development of the technique was presented at the 1990

Symposium.

THE SCATTERING EQUATION
In the development of this inversion process, attention was focused on simulating a

possible experiment in which measurements were made of the light scattered from nearly
identical, non-absorbing spherical particles. It was anticipated that the differential

scattering cross sections would be measured. The differential scattering cross sections are

equal to the convolution of the particle size and refractive index distribution function

(PSRIDF) with the scattering kernels. Thus, the following Fredholm equation of the first

kind relates the measured differential scattering cross section to the desired particle size

distribution function.

G = G* + 8G = f[(xn)K(xn)dxdn (1)

1

The vector G represents the set of measured differential scattering cross sections.
The vector G* is the set of error free differential scattering cross sections and the vector 8(s

represents the error associated with each of the measurements. The desired PSRIDF is

represented by f. The scattering kernels, K, are also differential scattering cross sections,
and they depend on the polarization of the incident light and Q2, the direction in which the

light is scattered, as well as the size parameter and the refractive index of the particle.

When the incident light is polarized parallel or perpendicular to the scattering plane, the

scattering kernels are simply the ratio shown in Equation 2 where i represents the Mie
intensity functions 2.

K(polarization~,fx,n) i(polarization,flx,n)
K ~ ol r za i n,1 x~ ) = - 2k -. . ... (2)

2k2

DECONVOLUTION METHOD

The deconvolution method outlined in this section is simply an extension of the

derivation given by Curry to include an unknown real refractive index1 . References 3 and

4 are good sources for information on Schmidt-Hilbert theory.
Define a function of size parameter and real refractive index such that
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M(xn,x',n') = XKj(xn)Kj(x',n') (3)

J
where j runs from 1 to the number of measurements made. The kernel covariance matrix is

defined as
00

=jKi(xn)Kk(xn)dxdn (4)Njk (4

The scattering kernels can be expressed as an expansion of the Sehmidt-Hilbert
eigenfunctions of M, and the eigenvalues and eigenvectors of the kernel covariarice matrix.

Kk(x,n) = Xj:VuXkOj(x,n) (5)

Since f(x,n) is sourcewise representable, the PSRIDF can be written as an
expansion of the eigenfunctions 3.

f(x,n) = •.ajcj(xn) (6)

Substituting Equations 5 and 6 into Equation 1 gives the following expression for
the unconstrained expansion coefficients aj

aj (7)

The use of these expansion coefficients produces highly oscillatory, unsatisfactory
PSRIDFs. This difficulty is overcome by the introduction of a trial function constraint.

A performance function is defined as
00

Q =1 G2+ yfj(f(x,n)-ft(x~n))2dxcdn (8)
J I

where ft(x,n) is a trial function of the assumed form and y is a Lagrange multiplier.
The performance function can be expressed in terms of the expansion coefficients,

the eigenvalues, the eigenvectors, and the set of measurements. The constrained expansion
coefficients are then determined by finding a minimum in Q with respect to (aj 1.
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taj Xj + t

aj + (9)

The optimal value of the Lagrange multiplier must now be determined. It can be
shown that the square norm of the error introduced by applying the constraint is bounded
by the parameter referred to by Curry as the residual relative variance or RRV1. The
optimal value of the Lagrange multiplier is found by minimizing the RRV with respect to y.

The constrained PSRIDF is calculated from Equation 6 with (aj) replacing the (aji.

Once the constrained PSRIDF has been obtained, the real part of the refractive
index is retrieved from

00

J'W(n)fc(xn)dxdn

W(ns) =1

{ifC(xn)dxdn

ns = W- 1 (W(ns)) (10)

where W(n) is a weighting function. The results presented in this paper were obtained
using the phase shift squared, x2[n-1] 2, as the weighting function. Physically, this
weighting function corresponds to the small argument form of the Anomalous Diffraction
approximation to the extinction efficiency 5.

To summarize, the deconvolution proceeds according to the following steps:
1. Equation 7 is used to calculate the unconstrained expansion coefficients.
Information obtained from the unconstrained solution is used to determine
the nature of the trial function.
2. The optimal value of the Lagrange multiplier is determined by increasing
y from zero until a minimum in the RRV is reached. This value of y is used
in Equation 9 to calculate the set of constrained expansion coefficients.
3. If the rms value of the residual errors is less than or equal to the expected

error, the PSRIDF is calculated using Equation 6 and the real part of the
refractive index is calculated from Equation 10. Otherwise, the trial
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function expansion coefficients are set equal to the constrained expansion
coefficients, and the procedure is repeated beginning at step 2.
4. If the peak value of the PSRIDF and the retrieved real part of the
refractive index are within a specified tolerance of the trial size and refractive
index, convergence is obtained. Otherwise, the trial function expansion
coefficients are set equal to the constrained expansion coefficients, and the
procedure is repeated beginning at step 2.
Three more matters need to be discussed before presenting the results of the

deconvolution of several synthetic data sets. First, each of the synthetic measurements are
normalized by the average of the measurements. Because of the difficulties associated with
making absolute scattering measurements, it is anticipated that such relative measurements
will be made in an actual experiment. Secondly, experience has shown that it is helpful to
weight the scattering kernels by the imprecision estimates1 ,6. Filally, the use of an
numeric filter is useful in smoothing the PSRIDFs. The filter simply averages the values of
the PSRIDF at three neighboring sizes, and sets the value of the PSRIDF at the maximum
and minimum sizes to zero.

DECONVOLUTION OF YEN SYNTHETIC DATA SETS
The intention here is to simulate an experiment in which measurements are made of

the light scattered from nearly identical, non-absorbing spherical particles. Therefore, it
was assumed that f(x,n) is the product of a narrow log normal distribution in x and a Dirac
delta function in n.

f(x,n) - 1 -(n11X)s

<2r ln(U) L 210 2(a)j

In all ten cases presented in this paper, ;, the geometric mean standard deviation, is 1.01.
Thus, the distribution is extremely narrow, and the median value xs corresponds to the

peak value. Normally distributed random error with a standard deviation of 5% of the
original value has been added to each synthetic data set, Sizes between 5 and 10 4m with a
step size of 0.05 grm are considered. The possible values of the real part of the refractive
index vary from 1.4 to 1.7 with a step size of 0.01. The incident light is linearly polarized
with a wavelength of 0.5145 R±m. Synthetic measurements for incident light polarized
parallel and perpendicular to the scattering plane are calculated at 50 polar angles ranging
from 5" to 175' in steps of 3.47". The Mie intensity functions used to calculatc the
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scattering kernels are generated using BHMIE written by Bohren and Huffman. All ten
synthetic data sets were generated by a third party, so the authors are unaware of the peak

size and refractive index of the PSRIDF prior to inverting the data.
In each case a preliminary solution is obtained in which the entire range of real

refractive indices are considered. Once a value for the refractive index is obtained the,
range of refractive indices is narrowed to include only the 2 or 4 refractive indices closest to
the preliminary result. The inversion process is then repeated and the results are taken to be
the retrieved size and refractive index. Table 1 compares the retrieved values with the
original values used to generate the synthetic measurements.

Table 1. Comparison of Original and Retrieved Values

Original Size (gm) Retrieved Size (lAm) Original Ref.Index Retrieved Ref.Index

5.50 5.40 1.69 1.70

6.00 6.00 1.50 1.50

7.50 7.50 1.41 1.41

9.50 9.45 -1.58 1.58

10.0 10.0 1.70 1.69

5.00 5.00 1.40 1.41

9.00 9.05 1.63 1.43

6.00 5.95 1.56 1.56

7.50 7.45 1.46 1.46

8.50 8.45 1.68 1.68

Several of the retrieved particle size distribution functions are compared with the
actual distributions in Figures 1-4. These comparisons show !hot the distributions obtained
when the size and refractive index are near the center of the x-n space are better than when
these values are near the boundaries of the space. Improved results would be easily

obtained in the cases where the retrieved values are near the boundaries of the x-n space by

shifting the size and refractive index ranges, and repeating the invcrsion process.
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Figure 1. PSDF when both Size and Refractive Index are near the Center of the x-n Space
Actual Refractive Index = 1.46

Range of Indices Considered in the Final Inversion 1.44-1.48
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Figure 2. PSDF when the Ref.Index is near the Boundary of the n Space
Actual Refractive Index = 1.69

Range of Indices Considered in the Final Inversion 1.68-1.70
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Figure 3, PSDF when the Size is near the Boundary of the x Space
Actual Refractive Index = 1.46

Range of Indices Considered in the Final Inversion 1.44-1.48
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Actual Refractive Index = 1.70

Range of Indices Considered in the Final Inversion 1.68-1.70
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CONCLUSIONS
Tho constrained eigenfunction method has been generalized to include retrieval of

the real refractive index as well as the particle size distribution function.

ACKNOWLEDGEMENTS

This work was sponsored by the Army Chemical Research, Development, and
Engineering Center, Aberdeen Proving Ground, MD under the supervision of J. R.

Bottiger, The allocation of time on the Cray-Y/MP for this project by the National Center
for Supercomputing Applications at the University of Illinois at Urbana-Champaign under

grant number TRA900467N is gratefully acknowledged.

REFERENCES
1, B.P. Curry, "Constrained Eigenfunction Method for the Inversion of Remote Sensing
Data: Application to Particle Size Determination from Light Scattering Measurements,"

Appl. Opt, 28, 1345 (1989).
2. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles

(John Wiley & Sons, New York, 1983), pp. 383.
3. J. Mathews and R.L. Walker, Mathematical Methods of Physics (Benjamin, New

York, 1964), pp. 292-297.

4. G, Arfken, Mathematical Methods for Physicists (Academic, New York, 1970),
pp.743-747.

5. H.C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981),

pp.131-134.

6. M.D. King, D.M. Byrne, B.M. Herman, and J.A. Reagan, "Aerosol Size
Distributions Obtained by Inversion of Spectral Optical Measurements," J. Atmos. Sci,

35, 2153 (1978).

91



BLANK

92



KULTIPHASE ELECTRODYNAMIC TRAPPING AND MANIPULATION OF MICROPARTICLES
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A) B. R. F. Kendall and E. T. Chesworth, "Measuring the Temperature of
Diamagnetically Levitated Microparticles," in Proceedings of the 1990 CRDEC
Scientific Conference on Obscuration and Aerosol Research.

1. INTRODUCTION

Three-phase electrodynamic particle traps were originally developed by
Wuerker, et al. 1 and others 2 , 3 in connection with fusion research. The typical
configuration involved six planar electrodes arranged in a cubic pattern.
Apertures in the electrodes provided for laser illumination and observation.

Advantages of this type of trap for aerosol studies include relatively
wide-angle optical access (especially if modern conducting glass or fine
photoetched mesh is used for the electrodes) and a geometry naturally suited
to the use of three-axis DC cross-fields for particle manipulation.

2. THREE-PHASE ELECTRODYNAMIC LEVITATION

We have constructed and tested a Wuerker-type three-phase particle trap at
frequencies in the range 40 co 1200 Hz and amplitudes of 500-2100V rms. The
cube edge dimension was 3.2 cm. A simplified diagram of this trap is shown in
Fig. 1. Glass, metal and liquid particles up to at least 80pm in diameter
were levitated successfully.

3, TWO-PHASE LEVITATION

It can be inconvenient to interface a 3-phase trap, with very high AC
potentials on all electrodes, with adjacent electrical devices such as
particle injectors operating at low voltages. As well as the obvious problems
of electrical arcs and corona discharges, there are more subtle problems of
electrical noise generation affecting adjacent image intensifiers, television
monitors and similar sensitive equipment. A variant of the basic three-phase
trap with zero or very low voltages on one pair of plates was therefore
sought.

The solution to this problem is shown iiL Figure 2. Let the phasors X, Y
and Z represent the instantaneous phases and the magnitudes of the AC signals
applied to the pairs of electrodes perpendicular to the x, y and z axes,
respectively. To the neutral point N of the three-phase system shown in 2(a)
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is added an additional AC :oltage exactly equal and opposite to that
represented by phasoi- Z. This additional phasor is showru in 2(b). The
resultant, shown in 2(c), is a signal of zero amplitude to the z plates, and
signals X' and Y' (which are 60 degrees apart and 1.73 times the amplitudes of
X and Y) applied to the x and y plates. Internal fields remain exactly the
same as in the three-phase case bocause the same additional AC voltage is
added to every electrode, yet only two AC generators are now required, as
shown in Fig. 3,

This system is conveniently used with the AC signal applied to the two
pairs of plates with their planes vertical, while only low-voltage DC is
applied to the top and bottom (z) electrodes to balance the force of gravity.
These electrodes carry the injectors and any other sensitive components.

As expected, the new system traps particles just as well as the original

but is much more convenient to use.

4. AMPLITUDE OF PARTICLE MOVEMENTS

Although it might appear that a particle in a dynamic trap would be in a
constant state of oscillation in three dimensions, it is found in practice
that the amplitudes are negligible if a vertical DC field is used to bring the
charged particle exactly to the center of the levitation cell and if the mass-
to-charge ratio is in the stable range, The positions of particles of 20 Am
diameter and optirmum mass-to-charge ratio can easily be kept steady ,ithin
45pm at 60Hz. These excursions are further reduced as the frequency is
increased.

5, EXTENSION TO DOUBLE CELL

Having low-potential electrodes on two of the faces makes it relatively
easy to interface two cells. This double cell was used successfully to
exchange particles in either direction between cells, The entire assembly can
be mounted inside a transparent dome for cuntrolled-hutrdity experiments.

6. ADDITIONAL EXPERIMENTS

In addition to the development of the three--phase and two-phase trapping
systems with transparent planar electrodes, as discussed above, a number of
additional experiments have been carried out. They include:

a) Operation of particle injectors for both solids and liquids in
conjunction with both types of multiphase traps.

b) Selection and manipulation of specific particles has been demonstrated
by moving the desired particle to the exact. center of the cell and
progressively rejecting other particles by quickly removing and restoring the
correct AG driving voltage, Additional studies of stability parameters will
be necessary to put this technique on a more scientific basis. At pre-,,nt it
depend.; greatly oil the skill. of the operator.

c) After launching positively cha.,!d parttcles (20 micron glass spheres),
negative parcicl(.s were injected into the same coll and the resulting
collisions observed by IYe . Up to fouI or fIi-i i ir i i Imxna',es wore COL11,ed
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in some cases before a particle was lost. This work involved highly-charged
positive particles and lightly-charged negative particles to reduce the chance
of complete neutralization (and hence loss) of the original particle after the
first collision.

d) A 5 watt argon laser has been installed and has been used to illuminate
levitated solids and liquid droplets. Some interesting effects involving
asymmetrical evaporation and large resultant forces on droplets have been
observed. These merit further study.

e) A variable-frequency chopped-beam helium-neon laser has been usod to
study the motions of particles in a multi-phase trap. All particles in a
given segment of the trap orbit in the same direction relative to well-defined
planes of symmetry. The major orbiting frequency is at the drive frequency
although interesting perturbations occur when adjacent particles interact.

f) A double-liquid injector is in the final stages of construction so that
oppositely-charged liquid droplets can be injected and manipulated in and
between the two sections of a double cell.

7. PROPOSED FUTURE WORK

Future work will include the study of controlled addition of one aerosol
droplet to another. Theoretical studies of the multiphase stability criteria,
with gravitational effects included, are planned, Additional work is
desirable on methods of particle selection and manipulation.
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ABSTRACT

Studies of light scattering at an angle of zero degrees by single

particles have been undertaken. Calculations for single spheres, and both

calculations and measurements for glass fibers are presented. The

measurements on glass fibers were made using th'ý 0.5145 pmn line from an

Ar÷ laser. Data have been obtained as a function of fiber radius from I ýLm to

35 p•m and are in excellent, agreement with theory. The measurement

technique is similar to the two beam coupling technique we used in previous
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measurements. However, the present approach is simpler and more robust.

It is based on the fanning of a coherent light beam in a photorefractive

BaT1O 3 crystal.

Future work will be directed towards increasing the sensitivity so that

zero degree scattering by single spheres and other microscopic particles

can be measured. Attention will be given to measurements of the scattering

angular distribution in the vicinity of zero degrees with millidegree angulkr

resolution,

Introduction

Light scattering near, as well as precisely at, an angle of 00 is of special

importance for a variety of reasons. These include: (1) The scattering

amplitude and phase at 00 gives the extinction via the optical theorem; the

latter is an important fundamental relation underlying a wide body of physics

but has previously not been directly verified in the optical region.11, (2)

Scattering near 00 is so large it significantly affects light propagation

through dust, smoke, haze, etc.; consequently, it plays a critical role in

imaging and light propagation. (3) Forward scattering can produce

erroneous results in experimentally measured optical extinction coefficients

and several algorithms have been used to overcome these difficulties.12 ' 31

(4) For identical scattering particulates, there is a coherent scattering effect

at zero degrees that, although not yet observed, should increase the

scattered intensity by a large factor.141 (5) Mueller matrix elements at a 00

scattering angle have been shown to permit classification of the shapes of

scattering particles into six symmetry classes, including the class of

particles with no symmetries.1 51 (6) Finally, scattering at 0° provides an

accurate measure of particle projected areas; in particular, it yields an

accurate measure of the radai of scattering spheres that is relatively

inden of their index of refraction.
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Theoretical Results for Scattering by Spheres at 00:

Item (6) is of special importance and some theoretical results are

provided to illustrate it. Consider the Mueller matrix element, S I that gives

the scattered intensity 1s for an unpolarized incident tnonstfy 1, (ILe.

=s 1 Ili). For a sphere scattering at 00, S1 I(0)= I S(O)I 2 %,, re S(O") is the

complex scattering amplitude.1 41 Fig. 1 shows $11(00)X 10" as a function of

the index of refraction for three spheres whose radii differ by 5%. 'The

wavelength is X=514.5 nm, Clearly, for all indices of refraction greater than

approximately 1,1, a determination of S1 1 (01) to an accuracy of -10% is

sufficient to determine the radius to an accuracy of --3%,

160

140

120 Lim ~i

100-wla a=20 ý.tm

80 a=19 pim

60-

40 r- -rr -rr-v- '- -v-ir'1 -rr'"r-i -r-T

1.0 1.2 1.4 1.6 1.8 2.0
Index of Refraction n

Figure 1. S 1 1(00)x10"6 as a function of the index of refraction
for three spheres of radii 19 gm, 20 gm, and 21 g~m.

For a fixed index of refraction n=1.55, S11(00) is shown in Fig. 2 as a

function of radius. Also shown is the diffraction term which gives the

dominant contribution, and which is independent of index of refraction.161 It

is given by,
4S1I (diffractIon) (0 1 = 4(na/X)4, (1)
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Figure 2. S 1 1 (0O)X10' 6 as a function of sphere radius for an
infex of refraction n,,.55. The smooth monotonic
increasing curve is the diffraction contribution.

2400- ----

2000 --

1600 .
"1200--, n=1,25-1.60

800 -

400 - - __

0 i

0 5 10 15 20 25

Sphere Radius (4m)

Figure 3. Superimposed plots of SII(0o)X 106 as a function of
sphere radius from I gm to 25 gm for indices of
refraction from 1.25 to 1.60 in steps of 0.05.
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Fig. 3 shows a superposition of the calculated SI 1 (O0) as a [tinct ion of

radius for indices of refraction n=1.25 to 1.60 In steps of 0.05. Once again,

it is clear that a measurement of S1 1(00) to an accuracy of - 10% is sufficient

to determine the radius to an accuracy of a few percent, independent of the

index of refraction in this range. This effect on the relative errors is also

apparent by using only the dominant diffraction term to calculate the

relation between errors in S1 1(00) and the radius a.

M = 1 . . ..ldiffractio2

a 4 S 1 1(diffraction)(0°)

Thus, the fractional error in the determination of the radius a Is accurately

given by 1/4 the fractional error In the measurement of S, 1. Finally, Fig, 4

shows details of the calculations in Fig, 3 for radii from 1 gam to 6 pm,

8 - -- - - - - - -

n-1.25-1.60

0 - ....... ... .. . . . . .. . ..-... .. .... .... .. ...... I. -....... ...

1 2 3 4 5 6
Sphere radius (pnm)

Figure 4. Superimposed plots of S1 (00 )X 1 6 as a function of
sphere radius from I 4nm to 6 tnIm for iI•dices otf
refraction from 1,25 to 1,60 In stcps of 0,05. Tihe
smooth curve is the diffraction term.

103



Experimental Background:

Experimental studies on light scattering by small particles are

generally limited to angles from the near forward direction to the

backscattering direction. The limiting experimental factor in the forward

direction, 0 =00, is the unscattered plane wave which is superposed with the

scattered spherical wave.[7) Separation of the two waves is not "impossible"

but is difficult.

The identifying characteristic of the light scattered at zero degrees is

its phase shift. This phase shift has a spatial time dependence when light is

scattered from a moving particle. Our new technique, which takes

advantage of the time varying phase shift, will measure light scattering at

zero degrees from isolated scatterers that are oscillating on undergoing

translation, The approach is based on transient energy coupling with

coherent light beams in BaTiO3 ,18 ' 91 Its application to the measurement of

scattering at 00 has been previously described.1 101 The present results were

obtained using a simplified version based on beam fanning,111 I

Experimental Results for Glass Fibers:

Fig. 5 shows a schematic of the experimental setup. The cw At+ laser

(514.5 nm) Is polarized in the plane of the figure, as is the C- axis of each

LBaTiO 3 crystal. The first crystal is 45b cut and the second is 0Q cut. iach

crystal was a cube of approximately 5x5x5 mm3. For all measurements the

laser power was kept below 10 mW to maintain a relatively long response

time (Ti- a few sec). Adjustable apertures Al. A2, and A3 shield the two

crystals and the detector from stray light. The lens collects the light that is

transmitted through the two crystals and focuses it onto the detector.

The scattering sample is a micron size glass fiber whose axis is normal

to the plane of Fig, 5 (and thus to the incident laser beam). The fiber is

mounted on a 12 rpm syiichronous inotor that rotates it in a circle of radius
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3 cm. In each rotation, the fiber crosses the laser beam twice, producing

two pulses of scattered light. The forward scattered portion of these pulses

together with the strong unscattered beam then passes through the two

successive BaTiO 3 crystals.

Fiber Al A2 A3 Detector

A r+ laser----------

Polarizer BaTiO 3 crystals Oscilloscope

Figure 5. The experimental set-up to measure light scattering
at zero degrees by a single glass fiber.

Initially, the crystals were exposed to the direct laser beam for several

minutes. The 450 cut crystal produced a very strong beam fanning at normal

incidence, However, due to the asymmetry of beam fanning, there was some

intensity left on one side of the laser beam. The second crystal further

reduced this background. More than 99% of the incident radiation was

deviated out of the direct beam path, creating a relatively dark background

in the forward direction. Each time the fiber crossed the laser beam, a

pulse of light appeared in this dark background. This pulse was detected

with a photodiode and the intensity was measured with a sampling

oscilloscope. The oscilloscope was triggered by the synchronous motor

which rotated the fiber.

Scattering by glass fibers with radii from 1 g±m to 27 gm was observed.

The observation solid angle for these measurements was a cone with full

angle of 0.080 centered at 00. It was determined by the aperture A3, the

collecting lens, and the position of the fiber. The fiber radii were estimated

from the angular intensity distributions of their diffraction patterns.
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FIgure 6. The absolute square of the scattering amplitude at

zero degrees, S*(0o)S(0o), vs. fiber radius.

Black dots in Fig. 6 show the measured intensity vs, the fiber radius,
The rapidly oscillating solid line is the theoretical prediction for the
scattered intensity at zero degrees. 14 l For reference, the monotonically
itcreasing curve is the diffraction term which is proportional to the square
of the radius.1 12 l One fitting parameter, the normalization for the ordinate,
was used. The data shows very good agreement with theory. Slight
variations In the measured intensity are believed to be due to minor
imperfections in the fibers. Specifically, a small nonuniformity in the fiber
cross section produces a significant change In the forward scattered signal.
'I'lfis is precisely one of the reasons that scattered Intensity measurements
ýtl W' ite useful for size determinations. (The other principle reason is the
:Clatjvly negligible dcpcendence on index of refraction for 00 scattering.) At
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times, small noise signals were seen due to dust particles crossing the laser

beam. These weae removed by averaging over several measurements.

Finally, Fig. 7 shows the variation of the forward scattered intensity as

a function of the incident laser power for five different fiber radii. The

forward scattered intensity measurements are linearly proportional to the

"incident intensity as enxpected.

250-4

20- 12.4 gm
I - 8.1 AiM

150

• 100 gm

50
1.3 gm

0 - ' , • I I I I I 1 I I "I I I i

0 1 2 3 4
Laser power (mW)

Figure 7. Forward scattered signal as a function of input laser
power. Each graph is for a fiber of a different radiuE
ranging from 1.3g. - 45g.

Summnary

A new technique for measuring light scattering at 00 has been

successfully demonstrated by measuring the forward scattering from a single

micron size glass fiber. Future work will be directed towards measurements

and analyses of the forward scattering by single spheres and other particles.

This novel technique should also be applicable to measurements of forward

scattering from aerosols as well as particle suspensions.
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Abstract

Inversion of light scattering by a single spherical scatterer with or without a layered
structure is studied. By numerical simulation of the statistical properties of experiments,
we can select those angles that will maximize the ability of the experiment to resolve a
sphere from a layered scatterer. Applying statistical decision theory, we obtain a criterion
for decision making that minimizes the probability of incorrect guesses.
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litroduction

Inversion problems have existed in various branches of engineering and physics for
a long time, but in the past twenty years they have received far more attention than ever
before because of the available of high speed computers. In the present paper, we are
going to invert light scattering information to recognize an inner structure of a spherical
object. Because intensities of scattering light are highly nonlinear functions of the size and
index of the scatterer, and noise is present, arbitrary pattern recognization is difficult. We
will restrict ourselves to distinguishing two kinds of refraction index patterns (uniform or a
layered sphere) with a range of parameters. We assume that the scatterer may be one of
two kinds of objects: a sphere with a uniform refractive index or a layered sphere with
different refraction indices for the core and shell, respectively, Our problems are: (1) For
given experimental conditions, is there enough information to make a decision? What is
the best choice of angles to yield the most significant statistics, (2) For given experimental
data, how should one make a decision that minimizes wrong guesses.

We assume that we already know the following facts: The wave length X of the
light in vacuum is .4416 microns, For the it= uniform sphere (hypotheses 1), the varying
parameters tire the radius R" and refraction index nit, in the ranges 4-•RU/X!<8 and
1.'33ýn< 1,8. For the 1= layered sphere (hypotheses 2), the varying paramneters are the
inner radius R?,, core and shell refraction indices rI and n, They are in the ranges
4<Rý,,/X <7, 1.335n!, 1.5 and 1,55<nl, • 1 8. "lhe outer radius R,,,t of the layered
sphere is fixed at Rout /%=8. Moreover, we assume there is a Gaussian noise added to the
scattered intensity with o//=O.I, where c is the width of the intensity distribution of the
Gaussian noise and I is the meaI intensity of the light scattered at a given angle.

The method of' examining general experimental data to decide between two
hypotheses is a classic problem in decision theory. A IwcOCCle1rc in the absence oft a priori
in! oriiation was proIposed by Neyman and Pearson1 in 1933, Their results are expressed
in terms of' "'maximtnum likelihood raltios". Ani excellent overview is given by Kendall and
Sttu'at2, A readable description of the Hayes theorem approach to the same problem is
given by van Trees. ',The close connection bet ween these two approaches is touched on
by Middleton"i ill his section on hillary detection systems,

Our problem is more general. in that we must estimate some continulous parameters
first, in order to make the best binary decision, In the present application, these parameters
are radii and indices of' refraction,. Thus011 our iprohllm mixes Continuous' parameter
esihination with discrete par•aalleter detection.

I)ist ing"ishahility

We propose lo sttidy the stat .•iicaIl piropcrties so that we may obtain a criterion for
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measuring the distingiishaui lity.

Suppose the experimienial light scattering data haVe been taken at (spherical)
scattering angles 6i and 0=0; the intensity of thtt scattering light per unit solid anlgle is
denoted as I(6j). We. want to relate the obseration informiation to thle structure of thle
scatterer. Because noise is always involved and can not be separated fromn the
experimental data, it will mix the two hypotbeses such that they can not be distinguished
when the noise level is relatively high. The noise level depends on the experimental
apparatus, the environment Lind the kind of data taken, For a given apparatus and
environment, we should Measure such data to minimize the relative noise level.

For a single scattering proes~s, the data measured ait different angles aire not
independent-, they tire cot-related through complex formulas (Mie scattering for a sphere and
shell), Because of thle complex relationships of the scattering formulas, we can not
analytically solve and Will use numer1106ical simltion1,101S to our probleil.

Let's say the object is ai uniform sphere, with thle paramteter element 1tMC Wtt lu I?
in the allowed range and the experimental observation is takentiat M4 angles 81 , . .. , 6A,1,
Here M is it moderate number of order 10, We canl regyard thle scattering ats a mnapping
from the parameter space il(t) to anl MI dimensional observation spaice
I. 1=iel ) ..... , 1 )m* Because noise is presenat, o ne point inl 11 space n la~psv toian M
dimensional "'box" in LM4 space, A simiilar mapping ,'lst) applies for at layered ob~ject. If, ati
each aingle Oi, separate mlelisuremlellts with P' di tt\'rent polarization intensities are maude,
corresponding to different polariziltionl Of the inlciden and scattered beaim, then PA4 will be
thle dimension for the observation spalco.. For Simplicity of notation, however, we do not
always introduce an exp~licit polarization Index,

Ini the following, we will define at resolution criterion, First, we generate at set
Swhich i icludes N elements ol' randomi paranliciters rl(.,Q ill thle allowed raliiges fotr

hypothesis ,J (,/ =I for unlit for sphere and J.. 2 for layered object'), where n=I,.A.Here N
is a large nMber1111 01' or-der I1000. Th'le mtth elemen0t 1J( of, the uniform sphere set I
has two parameters R?" and it" and the. inth kilvnic lt 11 ," of' the layered object set (i i")
contains three parameters R ,,, , Ili 111ýi and nol, ,il With the added nois,,e, one imange f'ur
each of the two sets Jti1l and ill j arwe obtained iii thle obs;ervationi space O. Within
the overlatp region of' the two images lin thle observatioti space. 01 the two kinds ol' objects
aire, indistinguishable friom the given MI intenisity measuretments. We will give the definlitionl
of overlap later, Ani event produint g ain imaige il thie overlap region of' the observation
splice is regarded ats tin indist itng~ltiShahie event lot' thle tWO hlypothCese. 'ouItitiý tig1th
t1Li'ilber of thle events which overlap inl thle observation space, wye mlay get a Inteaswre of'
indistinguishability betweena thle two eases. The tat io of the a utulber of overlapped evei. Itll
thle toUt I n timber events represents a meiasure ot, thle i adistNi gui ishabiIi ty.

We stuidy tlie probability propen iVes I& Ot' two hlyp)' it Il a iiie obser'vatol H nSPat



an image point from one hypothesis can always have a probability of overlap with the an
image of the other kind of hypothesis. Therefore we need to precisely define overlap of
images in the observation space. We use N (1()) for the number of events such the
intensity is in the range of 1(0) to 1(O)+dI(O) and N for the total number of events, We
then define an overlap function:

SF)= .. . " N(1)
FUl;1lI (e, i N NJ

where the subscript p denotes the polarization and the superscript (1) and (2) are for
different hypotheses. The set of N (-1000) points in {'iJ)j possesses a subset [I11)(0j)]
which overlap in the sense that it may no longer be possible to distinguish whether case
J=1 or J=2 is the correct with respect to a single measurement, We can choose a
threshold i, of indistinguishability ror 6j and measured intensity /,, by using the criteria

F(01,Ip;Pi1t) }, {iVl(D)a 1,, for all t1()P {q(i)} (2)

to determine the elements of subset Iltj)(O1i)l, For observations at many angles, the joint
set of subets for all measured angles

t0)

measures the overall fuzziness of the experiment, As an application, we assume the
measurement is taken att given angles 0=25, 40, 90, 105, 125, 140 for two polarizations (12
measuirements). For simplicity we set till x,, to be the same ajp=•. In Fig, 1 we show
the original set (dots) of parameters for the unifortmi sphere chosen by Monte Carlo
techniques, and Its joint subset for 12 measurements (triangles). The ratio of the numbers
of the elements of the joint subset and the original set is about 10%. Therefore, about
90% of unifonn sphere events (the dots not covered by the triangle in Fig. 1) are
distinguishable from the layered events in the L 12 space. The superscript 12 is the number
of dimensions of the observation space, that is the number (it' measurements, The
remaining 10% of' the events for the uniform sphere (the triangles in Fig, 1) are
indistinguishable from thie layered scatterer for the given set of 12 measurements,

To produces a bet er resolution between these two hypotheses, a trivial apV roach Is
to increase the number of the detectors so that the events in the new space L (M> 12)
will not overlap as much as in the original space L. 12, In most experiments,
distinguishability is limited by the number of detectors. To make the most of the
eqiulipment for a better resolution, one can rearrange the detectors for some optimized
angles so that the number of the elements in the joint subset is minimized, This can be
done by the following iteration procedure: First we randomly generate two parameter sets

I)}and rll2 ý Lis initial sampling sets, Use Eq. (4) below to find the best angle 01 by
taking a mininmum onf the overlap function F for two polarizations over 01. Substitute 01
and the original sampling sets into Eq, (5), below, to obtain the subsets Irl t1)(01 ) and
In (21(01 )I by El, (5). Iterating this procedure by using the new sets [nl(i)(0j )I in Eqls. (4)
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and (5), we will obtain the second best angle 02 and the subset [rlT i)(O,02)J. Repeat the
Iteration procedure (4) and (5) for angles 01, 2, 03 , ' - - until the number of elements of
the joint subset [i(t'(01 ..... ,0n) is less than a desired value, With the optimization
completed for i-1 angles, we can optimaize over 01 using:

ra i 1- dl F "(et, l,;[.n(t)(8 1, (.., t t l l l2)(8 1$ .... 991 _1)1)( )
ei p=1 0

"11, rM [,n(/)(Ot,9 .... ,Oi-11OI)l if Fp(01,1P;[1rl1()(0t, ..... ,. 1)~ r(•( t ..... ,01-1Al)>c1,P

for all i)ell(J)(01,..,0i-)] (5)

Here we assumed that Intensities of two polarizations (the subscript p) for each angle have
been measured,

Decision

In this section, we apply statistical decision theory to the Inversion problem, Let HI
and H2 denote the two hypotheses; I for the uniform sphere and 2 for the layered sphere,
Suppose we have obtained a set of experimental data for the Intensities at several angles
1exi)(01), We want to decide which class (unifotrm sphere or layered object) the scatterer
belongs to, We can use the least square fit to find the best fit for the hypothesis h:

Vh=1 E(a 0HA 10] (6)

within the permitted parameter space. A simple statistic to decide between these cases can
be chosen as v I-v 2 . Suppose the experimental data are from it uniform sphere, k=l,
Then v Is dominated by the experimental noise, usually a small value, while v2 Is a large
value because it is not dominated by noise but by the shift because of an Incorrectly
chosen hypothesis. For some experimental data the fitting with wrong hypothesis may be
small if the number of the detectors is not large enough, The wrong fitting value of v
covers it large range of a uniform scale space. Therefore we use a log scale for the statistic

R=loglo6(v /v 2 )

to decide between the two hypotheses, The decision rule can be obtained as follows,
Let's as,,ume we know the the conditional probability P(R I l-Ij) of getting R under
hypothesis it. According tW Neyman-Pearson- , when it priori probability and the cost of
the decision are Unknown, we may USe a constraint condition on the probability Pp, of a
"false alarm" is:

PF=oa.c P(R I Hi)dR (7)

to find the threshold X, where a is the value permitted for it false alarm (we say H12 while
H is true), After finding the threshold, we shall make decision by the criterion:
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if A(R)>X choose H2 (8)

if A(R)<% choose H 1  (9)

where

A(R)=P(R H1I)IP(R IH2) (10)

is the maximum likelihood ratio.

The conditional probabilities, P(R I Hh), can be obtained (ahead of time) by
numerical simulation, As an application, we generate a set consisting of 1000 elements of
random parameters for each hypothesis, We then calculate the intensities of the light
scattering for these parameters at the angles 0=90, 105,, 120,135, 150, 165 for both parallel
and perpendicular polarizations, Finally we add 10% noise to the calculated Intensities and
regard the result as pseudo experimental data, To get the distribution profiles for both
cases, we also use the least square method

to fit the pseudo experimental data with the best parameter n1(0". Here I/1 was computed
for source s (pseudo experimental data), vj, Is the best least square fit, for a set of
experimental data of source s by the hypothesis h within the permitted parameters, Because
we used wide ranges for the parameters, the Intensities have hundreds of oscillations over
the varying parameters, It Is difficult to locate a global minimum for vý, because It has
hunidreds of oscillations over the varying parameters, To make the programs more
efficient, we made lookup tables for the Bessel and Legendre functions, Defining
R'=logj0 (v/j /w) and counting the number of the events in which RI' falls Into the Interval
(R,RtdtR), denoted as N(R0), we obtain the distribution profile for the source s, In Fig, 2,
N(RV) vs RV Is plotted for both sources, The left profile of this figure is for the source
, v=l the uniform sphere, while the right one is for the source s'=2 the layered object, The
small overlap between the two curves in Fig, 2. shows that the resolution of these two
cases Is quite good,

11j Neyman and E, S, Pearson,' "On the Problem of' the Most Efficient Tests of Statistical
Hypothe.ses," Philosophical Trans. A, 231, 289 (1933)2M G, Kendall and A, Stuart, The Advanced Theory (/ Statistics, Volume 2 Hafner
Publishing Co, New York (1967)

31-1, L, Van Trees, Detection, Estimation, and Modulation Theory, Part I, John Wiley and
Sons, (1968)

4David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill
(1960)

114



*,6 * 66 6 o 616 . ,6.^ :. I.. .g, : .i% .. 1--A. .M..,
* A, I 

A 6 0

~ A .6 66.6 A ~AA6A A Al•A 0 A0^' A A

*6so* A A-
' : - ~ A•" " . * A 4

7 t .. s., A t

lot :0 A o .. .a ., : ^ .. , , A a,6 6 1 6 ' '* A I ' . I
" 46 . " , 1. . A A , A @

.0. * .6 * g A A so A A 04 A

6 -- e %As A A 1. I of4

.. 6

It 6 A 066 so A 6 -6 A OA so6

6 0 6 ,6 66 Aa
soO so Aeo

6- **A * AA6 So.

R. to' '" " '1 A'

1 
e 

%* of6

6.A " A ' . 66 '6 : ^ * 'y 6 6 *. A

4 6.h '1 ' ,; ' *6 6 .*, ,,".S."
66o6.6e6 6 o * 66 6 • o

6. 1. 1. . 1ee~~~f U oe

Fig.1 , sbe and ori oi A s . h U. Th v

isfrR1%,'h 00dos(n riig )tre rado l slece frm h aalal

points,~ ~ Io Ini ti ng befom tie laee betTerti ftenm eso h

666 6 ,. .. *A
--. , 0A ' ., *g 46

6 ..6 66 o

triangle and dot is abu 107,o aot9% Oftil nfr peeeet r

u f l e bec T .oi t st 6n s 1 e

eahoehsto c omoet of r n nu br fo th paaees of th unifor

,, @ 6 ' 6 ',%,

sphoreR, The 100 dorametes (and trile r a rs andrefratomly s elexte f the ravail ob
para %<te set 1.335o r Th e un ior sp renTe tre are for the iltents of the

trage addt is abIou 10, oraou 0 of the LiOr spher evns r
distinguishable fro l.ee ob .cs The oriina paraete . e osss10 lmns

each , oine hsubstw copn e rgnts pfrandomr numet'rso h aaeeso the uniform shr.Tevria cl
isphere, The twO0p0ramtes (ane therdiuls) and rfactionl indexte ino the rangesaof
paramete aet{nd ) l. or~ ,8 t he uiomeasphreiet T re traknge fo tr the elnt|enitis of two

polarizations (parallel and perpendicular) it o tingles 0e=25, 40, 90, 105, 125, 140

115



IM
1(X)

50- 21

li VN

R'=loglo(vv'j •

Fig. 2. Distribution profiles. The vertical axis is N(R') the number of' events per unit R,
dR=-..l is used, The left profile is the distribution profile for the appropriate for uniform
spherical source, while the right one is for the layered scatterer. The nmeasurements are
taken for the intensities of two polarizations (parallel and perpendicular) at 6 angles
0=90, 105, 120, 135, 150, 165 with 10% noise, The uncertainty of the parameter ranges
are follows: For the sphere, the two parameters are the radius and refraction index in the
ranges of 4.R'"/X-8 and 1.33:509l,8, For the layered object1 the three praImeters are
the inner radius and refraction indices in the ranges of 4•.Rj /A.:57, 1,33••n(l•5 and
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ABSTRACT

The problem of scattering and absorption of electromagnetic radiation by particles
can be solved analytically for only the simplest cases, but numerical methods allow a
straightforward extension to particles with arbitrary inhomogeneitics, arbitrary shapes, and
noni near response, In this paper a recently developed frequency domain method involving
CFD techniques is reviewed and applied to the problem of a dielectric sphere of arbitrary
size parameter, Numerical results Indicating the promise of finite element methods are
given and recommendations for further investigations are presented.

INTRODUCTION

Mie theory exactly describes the absorption and scattering of a plane electromag-
netic wave by an isotropic, dielectric sphere of arbitrary size and refractive index (van de
Hulst, 1957; Kerker, 1969). This conceptually simple analytical solution is well known,
but it involves cumbersome computations. Since the advent of high-speed computers,
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which utilize parallel and vector processing, much effort has been made to improve the ana-
lytical scattering algorithms (Wiscombe, 1979 and 1980), However, while it is relatively
simple to generate data for the spherical problem, the analytical calculations can not be ex-
tended to arbitrary nonspherical particles, If a numerical rather than an analytical approach
is taken, the extension to particles with arbitrary inhomogeneities, arbitrary shapes, and
nonlinear response is more apparent since the general governing equations and the solution
technique remain unchanged.

Previously a finite difference method was applied to the problem of a linearly polar-
ixed plane electromagnetic wave scattered by a perfectly conducting sphere (Ling, 1988),
The results demonstrated the applicability of computational fluid dynamics (CFD) methods
to the basic scattering problem. In this presentation, the Investigation is broadened by
using a finite element method to model scattering by a dielectric sphere; results confirm that
CFD methods are a promising technique, The objectives of further studies are discussed In
the final section.

THEORY

The problem to be solved consists of a plane polarized wave Incident on a dielectric
particle; only linear scattering is considered. Assuming exp(-4cot) dependence for all fields,
the electric and magnetkd fields must satisfy the vector wave equation both inside and out-
side the particle:

V2 E + k'• E -0 V2 H + k2'.H 0 (1,2)

whore k2 m (02ep. Additionally, the boundary conditions

A A
n ( EI - Ell), 0 n x (11I - II11) - 0 (3,4)

require that the tangential components of E and H must be continuous across the surface of
the particle (Bohren and Huffman, 1983) and the Sommerfeld radiation condition (Stratton,
1941) requires that the scattered fields represent divergent traveling waves as r - **. In
equations (3) and (4), "1" denotes the exterior region and "ll" denotes the internal region,

By Introducing two auxiliary scalar functions, the elecutic and magnetic Debye po-
tentials, u and v (Kerker, 1969; Born and Wolf, 1959; Borghese, et al,, 1979), it is
possible to reduce the vector equations (1) and (2) to a set of uncoupled scalar wave
equations:

V2u + k2u = 0 V2 v + k2v - 0. (5,6)

The field quantities can be deduced from the potentials as follows:

E V x [V(ru) x ' ] + ioAp Vx (rvr') (7)

If = VX [ V(rv) x ' ] + itocVx(rur). (8)

Since the field variables are oscillatory in nature over the infinite domain it is advan-
tageous to reformulate the problem once again, this time in terms of a generalized amplitude
function which eliminates the oscillations due to the incident field (Ling, 1987). By mak-
ing use of the superposition property of the fields, the Debye potentials outside the particle
can be decomposed into incident and scattered components. The scattered components then
are written as
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8 coso sine~"( S^:rO ciklr
u C snG f (r0) -r (9)

(e'Vt1/2 stnO sine f0(r,O) tk'r (10)
V- (k') 2 r

where ftr,e) is a Debye amplitude function. Similar expressions can be written for the po-
tentials inside the particle. It should be noted that the formulation of equations (9) and (10)
Inherently restricts one to the consideration of only axisymmetric problems. For asymmet-
ric cases the 4 dependence of the Debye potentials can not be factored out explicitly and one
must solve forf(r,r,0).

By substituting equation (9) into (5) and equation (10) into (6) it can be shown that
the problem to be solved is

""V(f f)" -'-t"k 1r afl + ei'f lkfi e ki2rf1(

er 1 2 ol . o.ikl) Alf 2 (k2 0 (

)r 2 " af + re ik'f. - _ 0(1

The boundary conditions (3) and (4) are, in terms off, andf 2 :

eik'relI " I - ec TrP. eW (13)sine

2 . f2 sine (14)

W jr- + -ikr + - cl+ ik If Is (sin -r

11 ) 119

,Iklrd•,l (E + ik If. - / +f ikN If --/* (16)

where

,Ikr cosO <0_ ek 9 ) e-,kr
W (r, 0) = sin - f c --- tan•- (17)

and the radiation condition can be expressed as
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0i* a = 0 (18)

Equations (13) through (16) are formulated for a spherical particle, where "a" is the radius
of the sphere. For the general asymmetric problem, equations (13) through (16) must be
satisfied at all (x,y) on the particle surface and the partial derivatives are given by Vf, n.

FINITE ELEMENT METHOD AND RESULTS

The system of equations is solved numerically on a Cray Y-MP8/864 by a finite
element method with 9-node Lagrange quadrilaterals (Becker, et al., 1981) using the sub-
routine HCGBLE, part of the Boeing Computer Services mathematical library (BCSLIB,
1989). A multiplier method (Carey and Oden, 1984) is used to enforce the jump in solu-
tion across the particle boundary, which must coincide with element boundaries. The ra-
diation boundary condition is imposed at a finite artificial surface (r << -) with good
accuracy by using a second-order approximation to the Sommerfeld condition (Bayliss, et
al., 1982). Both the radiation boundary condition and the jump in flux condition are
incorporated into the weak formulation of the differential equation.

Initial investigations have been perfomied for a CO2 laser, that has a wavelength in
vacuo of 10.591 j.m, incident on a spherical water particle that has a refractive index of
1.179+0.0711. The particle was isolated and was surrounded by air that was assumed to
have a refractive index of 1.0. Size parameters that were studied include 2.97, 5.93, and
11.87, which correspond to water droplets having diameters of 10.0 gim, 20.0 jin, and
40.0 lim.

Results are presented for the 40.0 jim case in Figs. I through 3. These results
were obtained using a 26x45 uniform mesh having a maximum grid radius of twice the
particle radius and required 13.8 seconds of CPU time (with a code that has not been fully
vectorized) to determine both f1 and! 2 over the entire domain. Fig. I depicts three-
dimensional views of the numerical and analytical solutions of the real part off2 . In these
graphs the incident wave propagates in the positive z-direction, from the left foreground to
the right rear. The particle is centered at the origin which is at the center of the plot, and the
x- and z-axes show distances in micrometers, By comparing the top and bottom pictures,
the excellent agreement between the two solutions can be seen. Plots of the imaginary part
off2 and the real and imaginary parts off, show similar agreement.

Figures 2 and 3 show two-dimensional views of the Dcbye amplitude functionsf!
andfL on the centerline of the sphere along the z-axis. The incident wave propagates from
left (0=180') to right (0=0'), so the forward direction corresponds to the right side of the
figures. i'he numerical solutions are given at the nodal locations while the analytical solu-
tions are represented by continuous curves. Several observmtions can be made from these
figures, the main one again being the good agreement between the numerical and analytical
solutions, f1 andf!2 are also qualitatively similar, which is expected because of the similar-
ity of the governing equations given in (11) and (12) and the boundary conditions given in
(13) through (17).

One quantitative measurenyent of the error of the numerical solution over its domain
is given by the mean-square, or L , norm (Becker et al., 1981), which is defined for com-
plex functions as

L2 = [J(e e*)dA] 1/2 (19)
where e is the difference between the analytical and the numerical solution and e * is the
complex conjugate of e. The better the numerical approximation, the closer the L2 rorn is
to zero. For the 40.0 pim water droplet, the N/ norms forf1 andf2 are both 3.7x 10-.
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Figure 4 shows both the computation time and the L 2 norms as a function of size
parameter of water droplet. Note ihat the computation times are not prohibitive and that the
relationship between CPU and x is approximately linear. Additionally, the norms do not
increase with increasing x, demonstrating, for examples studied so far, that the accuracy
of the solutions does not degrade with increasing size parameter. These items
support the idea that much larger spherical particles as well as more complicated scatterers
can be studied without modifying the underlying solution technique presented here.

RECOMMENDATIONS FOR CONTINUED INVESTIGATIONS

Fo!lowing is a list of recommendations for further investigations; a short descrip-
tion of necessary requirements accompanies each suggestion.
(1) Improve current algorithm. Decrease computation times through full vectorization of

the finite element code and the use of nonuniform and adaptive grid techniques.
These modifications will become important as more difficult scattering problems, in-
cluding problems in three dimensions, are modelled,

(2) Add postroessor. If results are desired in terms of fields, scattering amplitudes, the
Mueller matrix, or another quantity, these values can be calculated from the Debye
amplitude functions.

(3) Consider multilayerspheres This generalization will require minor modifications to
the code to allow the handling of more than one material interface. The solution
technique will remain unchanged.

(4) Consider arbitrarily-shaped axisymmc paricle for which the axis of symmetry is
aligned with the direction of propagation of the incident field. A grid generating rou-
tine that allows the user to define an arbitrary surface of revolution must be added to
the code for this case.

(5) Extend the calculations to asymmetric eaies. For asymmetric problems the Debye
amplitude functions are functions of r, 0, and 0 and the problem must be solved in
three dimensions.

(6) Consider nonlincarities. If the optical parameters are dependent on the electromag-
netic field, the differential equations that govern the scattering problem are nonlinear.
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ABSTRACT

A procedure for systematically comparing experimental and theoretical light
scattering properties of dielectric spheres - essentially an inversion technique -
was developed and applied to synthetic data of a kind obtainable with the Submicron
Particle Analyzer light scattering instrument. We found that with about 12 or more
measurements at various scattering angles and polarizations, each with an uncertainty
of ±109%, we could locate a sphere's parameters on the x-n plane to within a reasonably
small connected area. The next step in this work will be to perform inversions on
actual experimental measurements from well-characterized spheres.

1. INTRODUCTION

The Submicron Particle Analyzer (SPA) is an instrument built by Wyatt Tech-
nology Corp. for the U.S. Army Chemical Research, Development, and Engineering
Center (CRDEC) and is used to study light scattering by aerosol particles,.,- It com-
prises a spherical chamber in the center of which a dilute stream of sampled aerosol
particles traverses an intense laser bcam, one particle at a time. Light scattered
from each particle optionally passes through linear polarizers and is intercepted and
measured via 22 optical fibers which are distributed on the surface of the sphere and
lead to 22 photomultiplict tubes and associated electronics in a separate instrument
rack. The optical fibers, which are terminated on the chamber end with SELFOC
gradient index lenses, can be deployed among any of 72 ports on the sphere; the
same nine port scattering angles are repeated along eight semi-great circles 45" apart.

The obj.ýct of the SPA Is to gather a set or light scattering data from each
aerosol particle, from which physical cbaracteristics of thc particles, such as size and
shape, may he inferrcd. The aim of our current research with this instrument is
to work out the appropriate types of data to include in the measured sets and to
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discover the manner in which those data sets may be manipulatcd to reveal the
dcsired particle characteristics.

2. OUTLINE OF THE INVERSION METHOD

An inversion method, in the context of the present problem, may be said to
have succeeded when it produces numbers for the size and refractive index of a
sphere such that the calculated light scattering properties of that sphere agree with
the corresponding measured properties. We shall discover acceptable values for x
and n (the size parameter and real refractive index) by considering, one pair at a
time, "all" possible values of x and n, and repeatedly asking whether the spheres so
specified scatter light in agreement with the measurements, and noting the ones that
do.

As a starting point, we consider spheres represented by their coordinates
on the o - n plane in the limited region 0 < x < 10 (diameters up to about 1.6
micrometers in blue light) and 1.3 :5 n < 1.8 (which covers most dielectric materials).
The region is divided into a number of much smaller rectangular areas (pixels) of
dimensions Ac and An, with the intention of letting the sphere defined by the central
coordinates of each pixel stand for all the spheres represented within that pixel. This
scheme succeeds If the relevant scattering properties of central spheres in adjacent
pixels differ by less than the expected experimental uncertainty. Clearly the pixel
resolution must be at least as small as the accuracy with which we wish to recover
x and n, but the finer the resolution the lengthier the inversion computation. We
choose, rather arbitrarily, Ae = .05 and Art, = .005. This results in an array of 20200
pixels, stacked In 200 columns centered at x. = 0.05,0.10,..., 10.00, and along 101
rows centered at n = 1.300,1.305,..., 1.800.

To distinguish spherical from nonspherical particles, eight detectors, without
polarizers, arc located in a ring at scattering angle 0 = 551, and the incident beam
Is prepared in a right circularly polarized state. For spherical particles illuminated
In this way there can be no variation of light scattering with azimuth angle, 0;
uniformity of the eight detector signals confirms particle sphericity. Since the exact
path of particles through the Gaussian laser beam Is uncontrollable, the incident
beam intensity for any particle is not known and so only ratios of Intensities provide
useful scattering properties. The average intensity measurement of the eight ring
detectors will be the denominator for every intensity ratio.

We have chosen to distribute the remaining 14 detectors at scattering angles
400,75-,90-, 105-, 125 , and 1400 with no polarizers and with horizontally oriented
polarizers, and at 40' and 90' with diagonally oriented polarizers.
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3. CALCULATION OF SCATTERING RATIOS

All the possible intensity ratios (or, equivalently, flux ratios) were calculated
with a program based on SMIE, the well-known Mie scattering subroutine written
by J. V. Dave3 and which we obtained from Peter Barber.

The SELFOC lenses which collect light in the SPA have a small but finite
acceptance angle. An analysis showed that If the magnitude of scattered flux F is
known (only) at points 10 apart, and assumed to vary linearly in between, then the
flux through the SELFOC circular aperture of 1.10 centered at 0 should be written
as

Pi(O) = .1175 F(9 - 1i) + .7650 F(9) + 1175 F(O + 10)

The difference between P(O) and F(O) Is very small for the size parameters we
arc considering; nevertheless, this correction for the detector acceptance angle was
included.

A typical result is shown in figure 1, where the flux ratio D040 (Diagonal
polarizer, 9 = 400) is plotted In two representations over the x-n plane, We see
a landscape of sloping valleys and ridges, approximately parallel to lines of nx -
constant, For larger values of n or x the ridges become very steep near their crests, a
consequence of morphology-dependent resonances; the apparent spikes along some
rims are plotting artifacts, which result because the sampling mesh is too coarse to
represent the knife-edge ridges.

A smaller pixel size is needed in the vicinity of resonances, but it resolution
everywhere which is adequate to this worst case would require far too many pixels
to be practical. Instead, we kept the current pixel size and wrote a program to find
the minimum and maximum values of each flux ratio over the surface of every pixel.
A pixel will be said to be in agreement with an experimental measurement of a flux
ratio if the range between the calculated minimum and maximum values of that flux
ratio overlaps at all with the experimentally determined range: [measured value -±
uncertainty1.

4. TESTING THE INVERSION METHOD

A Fortran program named INVERT was written to explore and test the
inversion procedure. It first reads in a number of files, including the computed
miran/max values for the 14 selected flux ratios, a row of experimental detector
calibration coeflicients (used in this study to apply controlled errors to the synthetic
Input data), and an N by 24 array of numbers generated In a separate program and
simulating SPA measurcments on it run of N particles. When inverting real data, the
experimental uncertainty to be associated with each flux ratio measurement for each
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particle will be individually detcrmined, based on the mCasurcd absolute intensity,
but for this feasibility study we have just assigned various uncertainties to flux ratios
to observe their effect.

Taking one particle at a time, the program computes the average ring intensity
and flux ratios, and then for each pixel checks for agreement between the "measured"
range of ratio values and the calculated range of ratio values for each of the flux
ratios. In the end, each pixel is assigned a number between 0 and 14 according to
the number of measurements with which it agreed. (The program does not literally
ask 20,200 x 14 times whether an overlap occurs; the calculated min and max input
data files have boon sorted in ascending order, and are accompanied by integer arrays
which relate the sort order to the pixel order. With this information one can write
an algorithm to establish pixel hits and misses that runs about a thousand times
faster than direct Inquiry). The output file written by INVERT is actually a sot of
statements that Instruct a page formatting program (PageoGarden, Bloc Publishing
Corp.) In drawing a map of the x-n plane, Simple changes to INVERT can alter
the Information related by the pixel print density.

Because actual measurements of flux ratios may occasionally be In error by
more than our best estimate of the experimental uncertainty, It may be desirable to
admit solutions that do not necessarily satisfy all 14 of the available measurements.
We wanted to see how the number of false returns grew as we pared the number of
ratios with which agreement was required, and how the domain of solutions varied
with different levels of experimental uncertainty. A few of the many tests done are
shown in the following three representative figures.

Four pairs of x.n coordinates (indicated by crosses In the figure) wore selected
and used to calculate the four rows of scattering measurements that would be
produced by the (perfectly operating) SPA instrument sampling the corresponding
spheres. These data then were input to INVERT, and INVERT was told they were
accurate to within ±3%. In the figure, tho solidly shaded pixels tire those on which
flux ratios formed from the input data agree with previously calculated min/max flux
ratios for all 14 cases. Partially shaded pixels agreed with 12 or 13 of the flux ratio
"measurements", and op-n pixels with .1) or 11 of them. We believe 3% is an upper
limit for the SPA 1ceur;acy; under the most favorable conditions that accuracy might
be approached by one or two of the detectors. In the upper right of the figure note
that some returns for 10- 11 agreements have already separated out from the main
cluster. Notice also that for very small particles It will le almost impossible to get
refractive index information from ratio data.

An accuracy of ±10% Is more typical of the expected SPA performance. This
is the uncertainty level AsSumed iN figure 3, which show results for the same four
sphcres. We still see returns that tire tightly clustered, except when ais few as ten
agreements are accepted.
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At ±30% uncertainty, figure 4, the inumbcr of returns with 10-11 agreements is
overwhelming. Even worse than the high number of these returns is the way they arc
distributed in disconnected patches all over the x-n plane; there is no hint of where
the right answer might lie. The pattern looks much better for 12-13 agreements and
is quite good for 14 agreements. We expect 30% to be near the lower limit of SPA
measurement accuracy.

We have looked at many plots such as those in figures 2-4, including plots
in which the Input data was corrupted with random errors - though always within
the limits set by the assumed experimental uncertainty. There is surprisingly little
difference whether the data is actually distorted or not; the nature of the returns Is
pretty much completely established by the level of experimental uncertainty allowed.
Taking 10% as an average uncertainty value for the SPA, we concluded that requiring
13 or more agreements of a pixel to return It as a (possible) inversion solution should
produce useful results.

Figure 5 shows the inversion result for 12 spheres, with a 10% uncertainty
level assumed in the measurements, and requiring that a pixel agree with at least
13 of the 14 measurements. The outcome is encouraging. We see mostly compact
connected patches of returns whose size parameter spread Is about 0.3, roughly 0.05
micrometers for blue light. The refractive index spread is not so useful, about 0.1,
but the product nx Is very accurately determined.

We conclude that it is feasible to characterize small dielectric spheres with
data measured by the Submicron Particle Analyzer. We will next undertake the
experiments to do so, and if successful, will attempt to extend the method to spheres
of larger size and/or made of absorbing materials,
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ABSTRACT

The technique of measuring angular variation of a combination
of Mueller matrix elements for a suspension of a single species of
microorganisms is considered in combinatiun with the measurement of
fluorescence of the same suspension. The case of germination of
bacterial spores is considered as a dynamic example. The use of the
combined methods is shown to give a characteristic combination which in
this case identifies a population as bacterial spores. This is an
example showing how two optical methods can be combined to give
improved identification of a population of micron sized particles
collected from an aerosol.

INTRODUCTION:

During the last several years in various collaborations, we
have been considering how biological particles which might be found
in aerosols could be distinguished from background and then identified by
optical means. The advantage of optical methods isthat these are rapid
and should be readily automatable.

We started by studying angular polarized light scattering profiles
of various pure strains of bacteria and spores in liquid suspensions,
We found that a particular combination of Mueller matrix elements,
namely (S34 + S14)/(811 + S31) , shows interesting changes from one
species tc another and is extremely sensitive to size and perhaps
shape changes within a single species. Unfortunately this extreme
very sensitivity precludes using this technique alone as a unique
"fingerprint" for a bacterial species since bacteria are highly variable in
size and shape depending on growthconditions.

On another front, this year we studied the use of steady-state
fluorescence of bacteria and spores in liquid suspension as a
possible means to rapidly identify populations of microorganisms. We
found that these measurements are relatively less sensitive to size and
shape chinges and show some distinguishing features from one
microorganism to another. The fluorescent spectra however do show
some changes depending on the method of preparation, and these changes
are apt tcobe as large as the differences between the fluorescent spectra
of different species.

In this presentation we take the example of germination of bacterial
spores and examine the dynamics of the changes occuring during this
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process using both polarized light scattering and fluorescence as an
example of the use of combined methods for identification of aerosol
particles.

BIOLOGICAL BACKGROUND:

Sporulation Is a means that certain species of bacteria have
chosen , in the course of evolution , for survival of lean times. Among
those bacteria are the Bacilli which are found In great numbers in most
areas in the soil. When a given popukition of bacilli runs out of one or
more essential nutrients a type of differentiation takes place in a portion
of the bacteria present. A spheroidal or ellipsoidal body forms Inside the
Individual bacterlum which is affected. This object becomes the spore, a
hardened body with reduced water content which is characterized an index
of refraction elevated above that of the bacterium from which it came
(which was mostly water), a different chemical composition, and greatly
Increased survivability in the face of hazards such as UV radiation,
Ionizing radiation, heat, and antibiotics. The relative impunity of spores
to conditions hostile to bacteria is why the U.S. Army must be prepared to
detect and defend against them In the unfortunate event of the use of
biological weapons by an enemy.

.," Spore Coat.

Exosporlumr\

Rein 4'.."

Bacillus Cercus Spore

Figure 1. A drawing from electronmicrographs of typical Bacillus cereus
spores.
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There are othfer more philosophically satisfying reasons to be
interested in bacterial spores. All the genetic information
to produce unceasing generetions of progeny is contained in a single
bacterial spore, however the spore remains dormant until it receives
a signal from its environment indicating that conditions are again
favorable for the reproductive cycle of its bacterial offspring. Because of
the great resistance of spores to environmental hazards, it has been
speculated that the first interstellar travelers came here as spores.

The physical and chemical changes which occur after a spore receives
a signal from the environment to revert to bacterial form are what is
called grmilnation. Numerous such changes take place In a period lasting
from several minutes to an hour or moro after the germination signal.
Examples of these changes follow.

B iol looal:
* Spore becornes less heat, radiation and UV resistant to damage.

* Spore is ready to start reverting to bacterial form,

Chemical:
* Various chemicals are released Into the spores environment,

Physical:

* Optical density decreases substantially, ike. much less

light Is scattered by the germinated spore.

1. Heat 2. Add Qorminnint

Examples of
Oarmlninta

Small AMOUnif

S.............of L-alai nert ,
S~Intilna, or

Wthat mutrior,

Figure 2., Approximate conditions for germination In the laboratory are
illustrated
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Results:

in our experiments we found good germinating conditions for
-•pores of two species of bacilli, B. megatarium and B, cereus, The results
of preliminary optical measurements appear similar for both these cases,
but at this time we are only pre;',.'ed to show the results for
B. megaterium.

l'o check that germination was occuring we utilized both optical density
measurements at G0Onto, These register a substantial drop within
about twenty minutes when germination occurs. We also examined -100
spores under a phase contrast microscope, When > 80% of these change
from a bright white appearance to a dark grey appearance, This is taken to
Indicate germination,

At various times during the germination process, samples were
taken, chilled on ice, centrifuged and resuspended in a buffer at an optical
density of about 0,1 at 600 nm for examining the emission fluorescence
spectrum for an excitation at a wavelength of -'280 nm, As is seen in
Figure 3, the main change in the emission fiuoresoence spectrum occurs
after the heating of the spores (~" 20 minutes at 70 degrees)with
relatively little change after adding the ger minant,

Fluoroactnce Sp~ectr tor "•, •tAETl"#•l

. , . =teu

e-O 40O O0 60O
l~ml~ln Wavlenllt (rim

Fiue3 FurseneeisinfrB.mgtrimsoesdrn

germinatio



Since it was found that substantial changes occur fairly rapidly in the
angular pattern for the Mueller matrix combination

(S 34 + S14)/(s11 + S13) - (S34/S11)f

after the addition of the germinant, these measurements were made in
the germinating solution. This solution was found to have very little
absorbance at 633 nm which was the wavelength for these scattering
measurements. As Is seen in Figure 4, a small change occurs after
the heating step, but a major shift In the pattern occurs after the
spores are Immersed In the germinating solution. The graph labeled
3 In Figure 4 was generated about 40 minutes after adding the
germinating solution during which time most of the rapid changes In
the pattern have already occured. The germinated spores were
allowed to grow overnight In a nutrient medium and the scattering
pattern for the resulting bacteria washed and resuspended In buffer
Is seen to have undergone still further changes as Is seen In the
more oscillatory nature of graph 4 In Figure 4,

... . /S/ Scattering Results

P- -. baote.a .roWn LOt nutent Gwt,,s spores suspended n woter,
-** he$t trOAted spore'

-K .p, eninstld spo'Pres

Scatterinj Angle
. . . . . . . . I I_ .

Ia' 40' 00' J0' )00' 120' 140'

Figure 4, Changes In angular scattering pattern for germinating B.
megaterlum spores.
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Conclusions:

For the particular bacterial spores we are presently discussing,
the fluorescence emission spectrum changes substantially after
heating, but has very little change In form after germination, The
spectra all appear typical of what we have observed for a number of
bacterial spores. The other approach, the angular (S34/S11)1 pattern
shows very little change after heating, but a very substantial and
progressive change occurs during germination. These results, while
preliminary, show that, a combination of optical methods is
useful in studying the dynamics of spore germination and provides
substantial evidence for identifying a given suspension of particles as
made up of bacterial spores,
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ABSTRACT

An optical technique to Identify the presence of chemical coatings ovor rough surfaces Is de-
scribed. It Is based on selective use of olenients of thc 4x4 Mueller inatrix. The full wave theory
of electromagnetic scattering Is used to predict six independent Mueller elements from randomly
rough uncoated (dry) and coated (wet) surface materials an functions of th~e media, complex dialec-
tric coefficients, backacattering angle and mid-infrared wavelengths of laser beata excitations that
are 1) olarii atlon- modulated. The ant of Independent elements at beam wavelengths and backicat-
tering angles {M,(j 9j)) most sensitive to i optically thick contaminant coatings are Statistically
obtained from the full wave data bane, and detection parameters sets {~i, Ai) are Inputs to another
algorithm designed to Identify the contaminant coating (when present and intermctod by the Irra,
diating beams).

FUTURE WORK

These algorithms facilitate the operation of a multi-CO2 laser ellipsometer facility' now under
development at CRDEC for the remote dotection of chemical/biologic&l surface contaminants.

1. INTRODUCTION

Tile objective of this work Is to develop algorithms that operate on a Mueller matrix Infrared
data bane for the Identification of Interstitial liquid chemical coatings (contaminant lityars) over a
rough surface that separkats two semi-infinite media, Statistical techniques widely used In simi-
lar remote sensing problems are usually based on spectral reflectance, anilssivity, or pulse shape
meaiurements, However, such measurements do not uniquely raprooont topography and physical
p~ropeQrties of thle surface and subsurface constituents. We have developed multivariate statistical
algorithms for detecting the coatings based on amplitude and phase Information In the 16.13.oment
Mueller matrix, a measured data field that completely characterizes the surface at beam energies of
vilbrational r(c4urnance In the contaminant and backscattering angles wh~ere this contaminant signal
IN strongest,

An analytical study based onl thle full wave approachl directed us first to develop a method
for selecting bearn backscattoring anglesi (0j) and wavelengths (A,) producing Independent Mueller
elemnents sensitiVe to thle containi nation and uncommon with thle background scatterer (terrai1n).
1'Ili conitamilnants of Initerest are classes of 1kt-excitable liquids that have a rheology similar to
chemnical warfare agents. (The contamninant Is sometlinme referred to as thle chemicPl analyte, and
Is characterized by its complex dielectric coofficients cA.) The algorithms that determinen theseo
detnetion parameters and process thrI Mueller Clemet10. around these hiput data were specially
designed for tile CIWEC expeirimental ellPRipsoeter sensor, Typically, outp~uts of thle first algorithm
will mpecify tunling three of tile ellipsorneter's four Infrared laser transmnitters to energoies that
vilmratiolaiiy eIxcite thle anllyte (iLo., at absorption resoniance where thle anmilytn't; Imaginary p~art oif
( 11i1LXTIMIZON), alld off-tune0 a fourth laser to noni-resonance beamn energy (for nicamurilig a Muelier
inatrix rnferenceý.). In tile fuill wave model predictions, It is assunmud thmat thle randorniy rough
coatming layer is optically thick. Moreover, thle coated and ].are mturfaces may or mommy i~of have
the samie topography, lInitial outputs from tile firmt tilgorith u. traini tho ellipsoinetor sonsor to
recogoi'Aze coandiicato M mmlle~r mcattering elemeants containing feature-1 of the analyto mmost usmeful for
making a (ktectlon decimimi, Tihe sensor can be, itained fn~r sinmuitammomin analyte de'tectioims by Its
lInitlialization to (0j , A,) pa.i rs N l(ci fic. to several aimal yi rc o mm lids.
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After detection parameter sets {Oi, Ail are obtained fromn the processing of matrix elements
calculated by full wave theory, a second algorithm positively identifies a par .,cular coating ma-
terial, If an alarm condition exists (Indicating probable identification of a contaminant), then a
third algorithm proceeds to detaunine confidence of detection, The detection algorithm is based
on Hiotelling's T-squared method.' It involves a principal axis transformation of a vector whose
components are the independent, susceptible (most sensitive to the presence of the coating mate-
rial), Mueller matrix elements yielding a most probable analyte detection. The transformed vector
contains specific information on the analyte coating that Is most reliable for making a statistl-
cally based decision to discriminate among various coatings, and between coatings and background
material (terrain).

An overview of the full wave expressions used to develop a theoretical data base of indepen-
dent Mueller matrix elements has been published recently,3 The algorithm that first 'targets' all
anklytes by determining parameters sets {G9, Aj) is described In Section 2, and Ito accompanying
identification algorithm (if the analyte is present in the irradiation zone) Is described In Section 3.
Numerical examples from parameter selection and analyte detection algorithms are p.resented in
Section 4,

2. SELECTION OF INCIDENT ANGLE AND WAVELENGTH FOR OPTIMAL
IDENTIFICATION OF THE COATING MATERIAL

For Isotropic rough surfacos, tle bae•kcattWr Mueller tnatrix (per unit area) reduces to the
following special form

M M12 M22  0 0

0 0 M33 M34
0 0 -M 3 4 M44

A selection of beam incident angle, wavelength pairs, one per chemical coating, that produce
the most susceptible Mueller elements (to the coatings and between coatings and substrate) Is
performed by the first algorithm In two stages. The Initial (0i, Ai) selection in based on Mueller
element calculations3 by tile full wave model for a surface structure Including two randomly rough
interfaces (Figure 1), The final selection of these parameters Is based on experhinnttal data map.
pingN of the six Independent Mueller elements (I) in a rogion 8 ± A0i and Ai ± A, about Initial
values 9j and A,. For simplicity, the coating Is assumried to he optically thick. Tlhrefore, scattering
at the lower rough Interface of the coating material is neglected. (Chemlical coatings that do lint
totally attenuate the refracted beam can also be treated by full wave anadysis,) 4

The *!x Independent eletnents are evaluated at 9j and ,•l and form a 6.dlmneasional vector we
call E. (Tile full wave model computations are made over tile ellipsoniotir systems's full angle and
spectral ranges,)

2 2 [P11P21P',P41'P5,Pd] m (M11 , M12 , M22, MA13, IA , A14,1J' (2)

Let L and pb denote vectors asociated with coated (superscript 0i and hare (superscript b) rough
surfaces, respectively. For ,ach coatihig of speciral perrmittivity , ralizationh of p are coinputed
as functions of 0 and A with random variations 60, AA, Ar, A < h1 >, A < u,2 >, anld At, thiat
represent equipment tolerances, devihtions Ii tie scatterer's physical propttrtlm,, and variations in
rough surface statistical paratneters., l,or these roatlizatlonms, inan values < pk > and standard
deviations wh (k = 1, 2, 3, 41, 8, (3) are cnijmputed for each elemlimnt of the Vectors Vb and K. TO
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prevent this algorithm from selecting e, and Ai for sufficiently low reflective coating layers, Mueller
matrix elements that satisfy the condition I < pc > I < pt > I are ignored. Components of the
vector r are defined by:

rk !a pku(l < p1, > I-I < p'l), k = 1,2,3,4,6,6 (3)

and

sk = components of r that are non - zero for k = 1, ,L. (4)

In the above expression, u(-) is a unit step function, and dimension k < 6. The standard deviation
associated with the corresponding components sk of the vector a is defined as bk, Finally, the
components wh of the normalized difference vector g are defined as follows:

<,> -4 < (>)Xk fibk

The magnitude ofr is the distance between vectors < ab > and < ,.A > normalized to unit variance.
An initial selection of beam parameters (0j, Aj) that make a certain matrix detection event most
probable Is determined when x =s V•7j Is largest for a specific analyte coating (CA aborb), and can
be repeated for many physically dissimilar coatings,

3. IDENTIFICATION OF THE COATING MATERIAL

The identification algorithm Is based on Ilotelling's T-squared method 2, and Involves Inverting
the specific covarlance matrix for < # > of Equation (4), Ie., C s< ?i >< ? >1. For some natural
a.,d manufactured surfaces of interest in remote sensing, det(C) is vanishingly small, Therefore, to
avoid slngularltles In the Inversion operation, the following principal axis transformations (apply a
principal component analysis pre-operation) is performed on the vector < Ab >:

A = z < A > (6)
where Z Is the principal axis operator. The covariance matrix of Equation (6) is a diagonal matrix
denoted r'. It Is relatnd to the original covaxiance matrix C as follows:

r = zczl (7)

The operator Z Is unitary (Z- 1 = Z') since C Is real, symmetric, and non-negative definite,
The elements of diagonal matrix r are, therefore, real algenvalues (11 a 0) solving the following
characteristic equation,

det(C- 4,) = (8)

Elements of the Ith column of the matrix Z' are given by the components of the characteristic
vector Z which satisfy the following operator expression.

! = 714 (9)

Those elements of g associated with negligibly small elgenvalues (that cause Inversion problems)
are not Included In conmtruiting ý, a quantity we call the reduced discriminant vector. Its covari-
ance matrix Is the NxN dl.gonal matrix re where N < L. Denote •(Oj,Aj) the analyte reduced
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discriminant vector (ý associated %%:,L 'l, coating material with the subscript i = 1, 2, ,M-I eval.
uated at 0 = Oj and A = Ad, j = 1,2, .,M=1), and CM the background reduced vector discriminant
corresponding to j for a bare surface. When applying Hotelling's T-squared method to ý, a new
scalar quantity d?.4 is defined.

i = Vj" - - I'A'~
-N[ (,(e_,,A#t_ - M(G,,A•)*] 2  (0,., ,(0;•j)(10)

The values dis = V are stored In a computer data bank and accessed when compared to measured
scattering data from bare and coated surfaces. That data bue is structured in the following array
format,

D= ()

dM1 ' M - t

To identify an unknown surface coated with one of the M-I mattrlahs, or to determine whether the
surface Is bare, It i necessary to build the identifier vector.

(UI,' [U,, 2, ,,9 u.-1, (12)
In the following manner. Let ýu( 9,O) be tho measured reduced discriminant vector j for theunknown material at (0j, Aj). We define uj the same as dA, in Equation (10) except ; is replaced
by ý for the unknown material. The identifier vector u now has M-1 components. Positive
Ident ficatlon of the M-1 coating materials Is done by evaluating the lengths of ci of the difference
vectors u- d:

ci = Ii,- dI, (13)
The Identifier vector U Is classified as representing material n If C, < ce(t = 1,.,M, 1 0 n), or U.
represents the bare surface if emg < r,(i = 1,.-, M-1). The assurance that an identification Is truedepends on the value of c,. The smaller c, Is relative to ci (i $ n) the more assured one Is of
detecting analyte n. Additional data may lead to a moie definite identification. Faster acquisition
rates of data will also improve the performance of this algorithm when the chemical coating is
highly volatile or diffuses rapidly Into the bare surface (e.g., soil).

4. ILLUSTRATIVE EXAMPLES

The coating materials considered are DMMP (Dimethyl methyl phosphonate- CH3PO(OCH 3 )2),
DIMP (Dilsopropyl methyl phosphonante - CIIsPO(OCII(CII 3 )2 )2), and SF96 (General Electric
nomenclature, Polydimethyl siloxane - [-Si(CI13 )2O-],). An optimum infrared probe beam wave-
length generally corresponds to a strong IR center absorption band (Im(-() is maximum) repre-
senting stretching, rocking, or bending normal vibrational modes in primary atom groups of the
analyte molecules (vi:, laser stimulation of an oscillating molecular dipole moment). DMMP and
DIMP have strong P-O-C, C-O, and P=O vibrational modes within the ellipsometer's bandwidth,
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while SF96 can be excited into fundamental Si-O-Si and Si-C1I 3 vibrations. Tite background ma-
terial in these data runs is a composite clay (soil) whose c values were derived from an admixture
of three minerals: montmorillonite, kaolin, and Miite.

It is assumed that variations 6e, 6 < h2 >, and 6 < al > are uniformly distributed and can
cause up to :L5% deviation In the scatterer's physical properties, mean square height and slope,
respectively. Therefore,

< h2 >=< h2 >o (1 :I 0.05r) (14)

2 (15)a< o >< >0 (1 ± (0.05r) (15)

Ci = Cia(l - 0.05r) - icii(1. k0.058), i = 1,2,3,4 (16)

where r and s are uniformly distributed random variables bounded by 0 < (r, a) _< 1. The values
for the mean square height and slope, < h >o and < a >o used In this example are 20 /m2 and
0.5, respectively. In Equation (16) ciR and eia are the real and Imaginary parts of permittivity
Ci(A), respectively. The value of cit(i = 1 for DIMP, i = 2 for SF96, i = 3 for DMMP, and i = 4 =
M for composite clay) will peak at vibrational resonance of the material. The C02 laser beam
excitations that drive these resonances are tuned between the sensor's 9.0 am :5 Ai _< 12.5 pm
bandwidth.

On Implementing the algorithm that selects sets of {91, Ai) pairs to Identify i coating materials,
50 realizations of the vector p are used to obtain averages < 2 > and standard deviations wk. For
these three analyte coatings:

#1 480, Al = 10.17 Am for detecting el (DIMP)

02= 480, A2 = 12.36 jim for detecting C2 (SF96)

03 480, A3 = 12.21 14m for detecting C3 (DMMP).

The value of L in Equations (4) and (6) is the minimum number of Independent Mueller elements
needed to detect the coating material (or bare surface) for each incident angle/wavelength pair.
For DIMP, L = 1: the Mueller matrix element used to detect it is M3 4 . For each SF96 and DMMP
coating, L = 6: all six independent Mueller elements axe required for singular detections of SF96
and DMMP.

Figure (2a) shows a scatter plot of the reduced discriminant vector component C,(0i,Ai)i
of Equation (10) trained for coating DIMP. In Figure (2b), the discriminant vector component

C((2, A:1) 2 is plotted against component (i(02, A2)1 , trained for coating SF96. Finally in Figure (2c),
the discriminant vector component •(0a, A3)2 is plotted against component 60(3, A3 )1 , trained for
coating DIMP. Note that in all Figures (2a.c) the analyte and background data are clustered and
disjointed, so that a partition function can be defined. Mueller element data passed front the
ellipsometer sensor can be categorized as within (alarm) or outside (no alarm) the cluster do-
mains of specific materials, separated by the partition function. These data show that the Incident
angle/wavelength selection algorithm worked reliably in this trial.

The detection algorithm presented in Section 3, was programmed and executed with Mueller
element inputs used to build the vector discriminants J of Figures (2). Run titre was short, and
the operation was completed without flaw. In these data, simulated experimental trials produced
values of C,(Oj, Aj)(j = 1,2, .,M. 1) for each of the different analyte coatings and for the background
composite clay surface. Results of ci computationn via Equation (13) are shown in Table 1, where
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rows 1 through 3 cunsist of values of ci(i = 1,2,.,M) for rough surface analyte coatings with
permittivites: c, (DIMP, row 1); cl (SF96, row 2); and c3 (DMMP, row 3). In row 4, ci is
given for tALe bare composite clay rough surface of permittivity C4. A high confidence of analyto
dihcrimination in this trial is clear from inspection of the table data, i.e., digonal numbers are far
less than uff-ffiagonal numbers.

5. CONCLUSIONS

An algorithm based on phase-sensitive light scattering and detection of randomly rrugh sur-
face interfaces was applied to the remote detection problem. Independent elements of the Mueller
matrix are selectively measured at infrared beam energies that coincide with molecular vibrational
excitations in the contaminant layers, and angles of incidence determined in part by the scatterer's
surface topography. Algorithms process information in these susceptible MWeller elements on the
IR-absorbing coatings (analytes) and discern it from information on scattbring by the substrate
(background). These algorithms can be applied to a full wave theory data bank and the real-time
operation of a ritulti-C0 2 laser, photelastic modulation, ellipsometer instrument now being devel-
oped at CRDEC. initial determinations of beam backscatter angle and wa.velength pairs that train
the sensor for specific detections is based on full wave computations of groups of six independent
Mueller matrix elements, given inputs of topographical de,il and complex refractive analyte and
substrate. Once detection parameters (0,, A) are determined, an algorithm based on Hotelling's
T-square:l method is applied to identify the coating material (or to verify a non presence). The
degree of assurance that a particular identification is correct is also determined by the i,ýrithm.
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TABLE I

The Unknown Surface Is Compared to:

DIMP SF96 DMMP Composite

DIMP 1.9 51.3 19.4 24.4
Unknown (at)

SF96 49.4 2.1 34.6 53.1
Scattering (62)

DMMP 16.9 36.9 1.8 20,5
Sowrface (01)

Composite 24.8 53.7 22.2 0.4
(64)

Table 1. A trial run of the identification algorithm computing ci values from Equation (13) and

the diecriminant vectors of Figures 2a-c. In row 1 of the table, the unknown surface Is positively

identified u that of DIMP slnc,' cl is much less than C2, C3, and C4. Sim', rly, SF96 Is detected in

row 2, DMMP in row 3, and the bare composite clay surface in row 4.
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Figure 1. Definition of surfaces and Boma scattering parameters uhed in the full wave model
rode for computation of the Mueler matrix elements. Inc1dent beam and backscattered ray Stokes
vectors are i. and j' (b is bare, c Is contaminated surface), respectively, media permittlvitv and
permeability are c and p, respectively, and mean height of coating materill (cl ,pi) Is ho
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Abstract

A method for measuring multiple scattering by i Side Looking Lidar SLL, in which one of

the detectors' field of view is off the Inscr beam, is presented,

"Ile range-resolved multiple scattering signal ,approximated by double scattering, is used to

determine the cloud particle size distribution by means of the double scattering phase function,

'I'le results are compared with in Situ cloud droplet measurements using an airborne measuring

system. The goKl agreemcnt tbetween the two measurcments is presented and discmssed.
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I Introduction

It is accepted that the contribution of multiple scattering In Lidar measurements from

optically dense media causes dIfficulties In the interpretation of the Lidar signal usually based on a

single-scattering approximation. This is due the fact that most methods used in the past for

Inferring particle sizes from measurements obtained by a Lidar, are based on spectral or angular

single scattering measurements(l),

On the other hand, the multiple scattering Itself provides an additional piece of information when

it can be separated from the single-scattering contribution, This additional information Is used here

to deduce the cloud droplet size dlitributlon function, The scattering medium in the case discussed

below Is optically dense and the multiple scattering plays a major role in providing the necessary

Independent pieces of Infonnation for the inversion of the SLL measurements into the size

distribution function,

A preliminary approach for measurement of the multiple scattering contribution to the

backscattered signal of a pulsed Lidar previously reported (2,3) In the reported measurements, a

set of spatial filters in the focal plane of the receiver were used to block the receiver Field Of View

(RONV.) corresponding to the diverging transmitted beam. Consequently, the measured signal was

a result of multiple-scattering effects , the scattering of which originate only from the volurnes

outside the blocked FONV,

In this paper, we present a method for meaSuring range resolved single and multiple

scattering in one wavelength with two detectors, Actual measurements from clouds are used to

deduce the double scattering phase function of the cloud particles from which the size distribution

function is inferred, The results are compared with in situ cloud droplet measurements using

airborne measuring systems,
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II Multiple Scattering Measurements by SLL Method

In the SLL measuring tedLnique the total ýs' +. W nt: l.tiltiple) scattering on the one hand

and multiple scattering alone on the othor har ..4-t .ýeasured sImultaneously, The measuring

system Is schematically described in Fig. l. The laser transmits a pulse in the direction of f1

(shown in FIg.2), In the focal plane of the telescope (ILe, the receiver), there are two holes A1 and

92, The RONV, of the hole s, detects a Nignal consisting mainly of single-scattering contributions

containing tile laser beam divergence denoted as g1. The MO,V, of the second hole s, Is directed

away from the laser beam so that It consists of only multiple scattered photons that were redirected

from direction f I to direction f 2 , which Is at an angular distance d away from f 1 The 5L1,

g•el)1wtry Is such th1t thcre is no nverlop Ixtween the laser beam and the R,OV, or n and thus

there must be at least two scattering events to redirect photons from direction f 1 to f 2- See Fig-

2,The signal received through tq is denoted as 92,

We note that s, chosen for the single scattering 1,O,V,, is kept very small to reduce the multiple

scattered contribution to the measured signal g, to a negligible value so that gS can be regarded as

consisting merely of single scattering contributions, Since the PO,.s of s, and 82 are small, the

geometry of the SLI.L qystem can be •aniplified at a large distance R. from the laser, as shown In

Fig.3, Tile spatial volumes seen through holes s, and s2 can be described as two narrow cylinders

separated by a distance ) Ae * Ro,

At any given time, tile laser pulse propagates along the lert-hand cylinder , one detector measures

the return signal along the same cyilnder lind the second detector mensures the return ignail along

th, right-hand cylinder, In this Figure,thc detector at %2 measures scattering events of order 2

(double scattering) and higher, In tile case of double scattering, the first scattering event, takes

place at a height (1 0+ ?,), along the lefl-hand cylinder at a scattering angle q. The second

scattering event, takes place at a height (R10417) along the right-hand cylinder at sc;:ttering angle

(p-q) back tothe detector.
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Lt us define the height (Ro+ zs5) as the height corresponding to the distance from which a single

scattering event takes place when the laser position Is at f 1 and a measurement gl takes place. The

time corresponding to this scattering event is equal to t=2(Ro+,.)/c where c is the speed of light.

The contribution to tile signal g2(t) Is from all parts of first scnttering events at locations (R0+z1)

and the corresponding second scattering locations (R,+z2 ) Fig.3.

The scattering angles q as a function orzs ,zl and D are given by:

(6 = 2 (1n) i[ D 1

As tihe laser pulse penetrates the scattering medium (a.% z,, increases), the rnng$' of z, that can

contribute to the double scattering measured at (he receiver position !2 will Increase as will the

range oF scattering angles q that will contribute to the double scnttering The range or q I q rain,

qmna Is aa runclion or the single scattering location z,, within the scattering medium for a

separation distance D of 10m is shown in Fig. 4. It Is shown to increase monotonically as a

function of z., ,

An example oF multipln scattering mensurements of atmospheric clouds is given in Fig, 5 for t11e

separation angle ofd =7 tnrad.llhe F.O.V.s of the holes s, and s2 are both 0,5 mrad, and Ro=2.2

kim, The laser wavelength is 0,532 mm ,the Lidar ptlse width is 10 ns, and the electronic

integration time is 20 ns (corTesponding to a 3m spatial resolution).Thic pulse repetition rate is 20

lHz •nd we averaged over 8 pulses in each direction, The first curve is the measured signal g1 and

the second curve i•s the milliplc-scattering signal g2 detcc•ed at s2. The curve of* g2 i; as expcic'd it

first much weaker than gl but as the pulse pcnetrnitcs into the cloud g2 increases sharply relative to

g1.
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111. Retrieval of the double scattering phase function p2(q) from

double scattering measurements g2(zs) of a real cloud.

As mentioned above, real clouds cannot be characterized as homogeneous media. This is in

particular the case near the cloud surface.

We first assume that the laser signal is scattered by different volumes within a cloud layer all

characterized with the same size distribution function except for the number density, This is found

to be the case when the layer is horizontal and thus represents the same stage in the growth process

of the cloud droplets (4).

Let S(z) be the single scattering volume extinction coefficient for a given cloud depth z.

Therefore:

P(ez) = C(z)p(O) (2)

where p(q) is the normalized single scattering phase function,

The use of Eq, 2 leads to the double scattering equation of an inhornogenuous cloud:

g2(z,,) =A p(e)p )O(z).( 1 ,, I2 s xp2-ex a(Otdt dzt (3)

02z5  ~(Ro+z 2) DL J

where:

ZmaX = D/tan(qmax ) is the highest first scattering location satisfying the constraint of a

common zss for all double scattering events.See Fig,3

I z2 - z1l = D/sin(q ) Z2 = z, + D/tan(q), L is the total optical path in the cloud kind A

is the system constant In the case of double scattering the scattering process is limited to

scattering occurring within one plane formed by f I and f 2 -

It should be emphasized that p(q) (Eq.3) dependent on the laser beamn polarization. In our case

the hlscr is linearly polarized in the scattcring plane and therefore p(q)=pl(q). We al.o note that
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this equation represents water cloud droplets for which absorption is negligible.

Knowing the value of S(z) (see below) makes it possible to use Eq.3 for the derivation of the

double scattering phase function: P2( q) P(q) p( p- q).
This is achieved by using a recurrence approach as follows:

The range of angle q contributing to g2(zss) increas monotonically with z, ,Since the Lidar spatial

resolutio is constant the value of zss is varied in steps of D7, vD , the integrals in Eq ,3 are

replaced by the averaging sums:

g2(Az*n) = A nps(02)o(z1 1 )o(z21 ) 1 sin20 exy(t)dt Az (5)
W (Ro+z 2 i)''

where:

zi -. Dz*i

and:

zii- t• +tan(Oi)

In this case L1 is also varying and is dctemiined by the optical path in the cloud

The initial veluc of P2(q) can be chosen as a norrnalization constant. It follows that p2(q) is

given by:

(in)
g92  (Az*n) - g2(Az*(n-1)) (6)

Ag2(Az*n)

where g2(01) (Dz*n) is the nicasured signal, g2 (D7*(n- 1) is given by i.,5 and:
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Ag.2(Az*ni) = A*o(zin)0(z•?n) (RC+z2n) 2D2

for any given value of n.
We note that the valua of the scattering angleqi is defined by:

q t = [q (Dz*(i- l))÷q (Dz*i)]/2 where q(Dz*i) is determined bylEq. ! with Dz =(Zss -Zl)-

P2(qi) is therefore the average value Of P2(q) in the range jq(Dz*(-1)) , q(i.z*i)]. Therefore the

average value of q representing the first spatial Lidar step within the cloud is about 80 degree (See

Figs. 8,9).
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IV. The determination of the volume extinction profile S(z).

For the derivation of S(z) we use the single scattering measurements g, as obtained through hole

s1, by applying the backward Klett method (5) for the inversion process:

O(z) = g1(z)z,2  (7)
+ 2J g1 (t)t•dt

where g1(z) is the backscattered signal from a distance z and Sm is the assumed volume

extinction coefficient of z=zm in the cloud. S(z) is the required extinction coefficient profile within

the cloud layer.
"In order to use the inversion Eq.7 we use the following assumptions:

a. The ratio oir the single. backscattering coefficient over the extinction coefficient is constant

This assumption is a direct consequence of the fact ihat the distribution function is constant vs. z.

b. Klett's inversion methc'd is based on the single scattering Lidar equation.

This assumption is justified by the use of a vcey narrow R.O.V, which ensures that multiple

scattering contributions to g, are negligible.

In Fig.6 Multiple/single scattering gn1/g1 Lidar return signal are calculated by a Monte Carlo

codc(7) for a detector F.O.V. of 0.5 mrad, a range to the cloud R0=lKm , a Cl cloud , a volume

extinction coefficient S=17km"1 ,aand a laser wavelength of 0.532 m m.

It can be seen that the multiple scattering calculations gm (where m 2) for a FO,. of 0.5 mrad,

give-.s rise to a multiple scattering contribution of less than 5% compared to the single scattering

signal up to a penetration depth ofz=100m (corresponding to an optical depth of t A 4).

r. rhe main inaccuracy in using Klett's approach is the necessity of choosing a boundary value

SM at 7., . However it has been showit (5,6) that when the medium is very dense the choice of

Sn , has a little influence on the accuracy of the results, since S(r) converges rapidly to the real

value for any given value Si.
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In our case, we use this result in the following way:

We chose sM in the depth of the cloud far away from the layer of interest being within the first

60m from the cloud surface.

Doing so, the results s(r) at z < 60 is reaches a high degree of accuracy.

V. The Double Scattering Approximation.

The multiple scattering signal g2 in Eq.5 represent double scattering contribution and neglect higher

orders of multiple scattering. In order to check the validity of the double scattering approximation

for g2 a Monte Carlo code (7) was used to compare the relative magnitueds of the varius

scattering orders, for the SLL geomatry.

The results of the calculations are presented in Fig. 7 , Multiple/single scattering SLL return

signal through hole s2 gin/g2 (where m>2) curves is plotted against the cloud penetration depth.

The detectors is ON.V. of 0.5mrad and volume extinction coefficient S=lOkm"1, It can be seen

that 1he SLL signal gm (where m>2) is less than 5% compared to the double scattering signal 92 for

a penetration depth of 60m when 0 =3 mrad and less than 15% for d = 7 mrad. Therefore the

double scattering approximnation is valid for optical depth velue t < 1. This rtquirment is obeyed in

all our experernent.
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VI. The Determination of the cloud droplet size distribution f(a)

from the double scattering phase function P2(q),,

The double scattering phase function P2(q) can be used as an input data for an analytical inversion

method (8,10) in order to yield the cloud droplet size distribution f(a), However since field

measurements from real clouds may introduce large errors, we used an additional approach for the

inversion of the measured values, This approach is based on the fact that in most practical cases a.

priori information on the cloud is available,

In our particular case in-situ measurements provided the general behavior oh the distribution

function.

Moreover since our measurements were limited to the cloud base zone the distribution function

could be assumed to have one maximum within the size range I- 10 m m (4,9),

We therefore assumed a log-normal distribution function for which the geometrical mean radius

m and the expansion parameter a are determined from the measurements.

The Log-normal distribution has the form:

f(a) A*exrj-!( Log(a) - Log(ýi)
2 Log(ct)J

We thus limit the practical inversion method into the determination of m and a

In order to simplify the comparison of p2(m)(q) derived from the measurements with the

theoretical p2(qm,a) calculated for a given set of m and a ,we developed a library of

p.ýq,m,a) for a series of average values of m and a in such a way that:

p2(O4Ao = p(O,j.t,o) p(n-O,IAt,o (9)

where:

Waxa

= Jamxin o(0,a)f(,,a)(a) da (9a)
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where f(m,a)(a) is the Log-normal size distribution function and ss(q,a) is the differential

scater.ng cross rection of a particle of a size parameter 2p 8 (calculated from Mie theory).

In this way we have formed a matrix of the double scattering functions P2(q, m, a).

The best matched p2.(q, m, a) from the matrix to the "measured" p2(tf)(q) is found by adopting

the following criterion:

CQp,a) = I n I P2(0it4A) - P2(m)(01) I(10)

The "measured" p2 (m)(q) is derived from the measurements using Fq, 6 and the parameters m

and 3 are chosen such that C is minimized.

VII. The Sensitivity of the Method to Measurement Errors.

In order to examiine the sensitivity of this approach to the measurement accuracy, we have

performed several computer simulation%

The simulations were performed as follows.

A trial profile was -J-,osen for the extinction coefficient profile within the cloud layer for a given

cloud size distribution fonction, We then used E3q,5 to calculate g2 (zss) to which we added an error.

"Tlhe calculate g2 (z7,) with the errors was regared as the measurements to which we then applied

the recurrence Eq,6 and then we use the inversion method described above to get f(a).

It can bee seen (Fig. 9) that the reconstruction of P2(q) reached a high degree of accuracy for

the angular range q = 15 to 80 degrees even for random data error up to 10%.

In Figs. 8a and 8b the effect of the random arror is seen. The pronounc,!dminimum in the value of

the correlation parameter C is smeared as the errors increase.

In the simulation we chose a =-m2 the distinct minimum in C can be found even for a

random error of as high as 10% in the simulated measurements.
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In order to simulate the effect of errors due to the higher orders of multiple scattering

contribution, we introduced a systamatic arror in the forme: g' 2(z) -g 2(z)(1+bz) to take into

acount the increase contribution of multiple scattering as a function of the penetration depth.
Figs. 9, 9a, 9b present the results achieved with simulated measurements containing systematic

errors of up to a value of b=0,5 which corresponds to a 50% error in the largest penetration depth.

It can be seen that even with such a big error the results agree with the assumed distribution to a

good degree of accuracy,

VIII. Field Experiments and Results

During the winter of 1990 various measurements were performed in the Israel costal area

intended to determine the cloud droplet number density and size distribution function.

Simultaneous in-situ measurements were taken by a Knollenberg droplet counting system
mounted in a air-plane,

In Fig, 10 the SLL-cloud-plane geometry is presented. The penetration path within the cloud is

contained in one heigth layer for which one can assume that the size distribution function is

constant (4),

Several profiles of the SLL echoes gl(z) and g2(z) were taken as a function of time, one

example of which is presented in Fig, 1I.

In this example the distance to the cloud is R0 =1.9 km The Lidar spatial resolution is 3n. For

the calculation we use 20 data points , corresponding to total penetration depth of 60m.

The two curves ( not in the same relative units) represent a typical shift of the maximal signals

from the shorter distances in g, to the longer distances in g2 for which only multiple scattering

contributions are measured.

We note that the fluctuations in gt are mainly due to the cloud structure in addition to the

extinction.

In order to calculate the valuem extinction profile S(z) in this inhomogeneous cloud we used the

Klett mcthod Eq.7. boundary value Sm was chosen at a cloud depth of 175nl, and as a

consequence the extinction profile of ranges up to 60m can be treated with a high degree of

accuracy (See Fig 12, and sec discussion in IV).
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The numerical results of Fig. 12 were then used for the determination of the double scattering

"measured" phase function p2(m)(q), based on Eq. 6.

The double scattering "measured" phase function p2(m)(q) is shown in Fig. 13 with the best-fit

matrix vector element P2(q, m, a) found by minimizing the correlation parameter C. The minimum

was also shown to be well defined either as a function of m or a, See Fig. 13a.

Finally, the corresponding size distribution function of the cloud droplets given in Fig, 14 Is

compared against the In-situ measurements, As can be seen there is a good agreement between the

two curves. We note that the Knollenberg counter did not meseared small particles whone radius

is smaller than 1,5 microns,

IX. Discussion

The approach discussed is an example of the added information to the Lidar measurements
provided by the multiple scattering effect previously treated as a disturbance.

The double scattering phase function P2(q) is very sensitive to the size distribution parameters,

For exemple P2(10)/P2(80) varies by one order of magnitude when the droplet mean size m varied

from 1 to 2 mm.

The invcrsion of field measurements into the size distribution function was shown to be

practically possible by using a priori knowledge of the general behavior of the distribution

function. By reducing the number of unknowns to the mean radius and the expansion of a log-

normnal distribution even highly fluctuating inhomogeneous clouds in respect to the .lumber density

can provide measurable information on the sizes.

It is practically inpossible to perform the rirbom and SLL measurements at the same position.

But several in-situ records from the same horizontal cloud layer a few km wide showed almost no

variations in the size distribution

(4) and therefore all records cloud from the same heigth could be used for the discussed

comparisotns.

Finally, the same approach can be used for different layers in the cloud by varying the Lidar
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Clevation angle, This way the cloud size distribution and densityprofiles can be obtaincd for the study or the droplet growth process in the cloud.
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M.C code. The detectors F.O.V are O.5mrad. The range to the cloud RCa.tlKm . The cloud is CI
type. the volume extinction coefficient S= I Okm" I and the laser wavelength is 0.532 m m.
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Fig.8 Double scattering phase function Log(p2) as computed form g2 containing various random
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parameters m -a - 2m m,
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Fig.10 The experiments field set up.
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Fig.12 The volume extinction profile in the cloud S(z), as computed from g, of flg. II by Klett

method.
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ABSTRACT

Theoretical calculations of the internal particle normalized source function (S - IEI1) dis-
tribution are presented for plane wave illuminated particles of spherical, prolate spheroidal, and
axisymmetric corrugated geometries. For the parameters considered (size parameter = 10.0, com-
plex relative refractive index = 1.33 + 1.0X10-i), the calculations indicate that shadow side
field enhancement ,ipparently does not require a pure spherical geometry, :tnd can occur in even
"nonstandard" geometries, such as the axisymmetric corrugated particle. Future calculations will
be performed investigating effects at both higher and lower size parameters, and for additional
geometries.

I. INTRODUCTION

In recent years, nonlinear optical effects have been experimentally studied by focusing a laser
beam on isolated micron-sized liquid droplets. For weakly absorbing liquids, and for wavelengths
of-the-order-of or shorter than the droplet diameter, the carved surfaces of the spherical droplet
can result in an internal "focusing" of the incident light so as to create regions of concentrated
electromagnetic energy density near the shadow side of the droplet. yov ver, droplets may not
always be perfectly spherical because of aerodynamic, elastic, thermal, and/or electromagnetic
stresses. In this paper, systematic theoretical calculations are presented investigating the internal
electromagnetic field enhancement within nonspherical particles.

II. GENERAL THEORY

The electromagiietic field calculations were performed using a recently developed theoretical
procedure that permits the determination of the electromagnetic fields for an arbitrary incident
field directed upon a homogeneous particle of arbitrarily-defined shape)1 The theoretical procedure
is described in detail in Ref. 1. Only the general assumptions and parameters will be described
here.

A particle within an infinite, nonabsorbing, dielectric medium is considered. Both the particle
and the surrounding medium are homogeneous, isotropic, and nionmagnetic (it = 1). A monochro-
matic field, presumed known, is incident on the particle. The coordinate system origin is located
within (and near the center) of the particle. All electromagnetic quantities are nondimensional-
ized relative to an electric field amplitude characteristic of the incident field (Eo) and all spatial
quantities are nondirifensionalized relative to a characteristic radius of the particle (a).

Important input parameters for the analysis are as follows: (1) the particle shape function,
ý(O, 0) (A nondimensionalized single-valued function of the sphlerica~l coordinate angles that deffines
the surface of the particle.), (2) the particle size paramieter, a = 2fra/A,,, (A,,.i is the wavelength
within the surrounrhing medium.), (3) the complex relative refractive index of the particle, ft
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.tl , and (4) the various tparat4'ters associated with the character (plane wave, focused
beam, propagation direction, etc.) of the incident field.

For the calculations presented here, the incident field is assumed to be a linearly polarized,
plane wave. The plane wave propagates parallel to the x-z plane with a propagation direction angle
of Obd relative to the y-z plane. The polarization angle kbd indicates the angle of the direction of
the incident electric field polarization relative to the x-z plane. For the calculations presented here,
the direction of the incident ,lectric field polarization was kept parallel to the x-z plane (Obd = 00)
for all cases.

III. SYSTEMATIC CALCULATIONS

In order to investigate the effect of particle geometry on the distribution of the internal electro-
magnetic field, a set of systematic calculations were performed for a linearly polarized plane wave
incident on particles of spherical, prolate spheroidal, and axisymmetric corrugated geometries. A
complex relative refractive index of fi = 1.33 + 1.0x10- 8 i (approximately that of water in the
vidible spectrum) and a particle size parameter of ak - 10.0 were used for all calculations. For the
prolate spheroid, a 1.3 to 1.0 axis ratio was chosen,

f P(O) = 1V/(13inm)2 / + (eosO) 2 . (1)

The axisymmetric corrugated particle, with corresponding particle shape function,

S= 0.92 + o.o8cos(70), (2)

was selected as an example of a "nonstandard" geometry. For the prolate spheroidal and axisym-
metric corrugated particles, calculations were perfocmied for incident propagation anglec of Obdt =
00, 300, 450, 000, and 900.

The results are shown in Figs. 1-11. The plots provide the normalized source function (S =
JP12) distribution in the x.z plane. Only the internal particle normalized source function is plotted
(the near-field values of S were artificially set to zero) so as to clearly distinguish the particle
boundaries. Figure 1 gives the normalized source function distribution for the reference case of a
plane wave (06d = 00, incident propagation in the +z axis direction) incident on a spherical particle.
The familiar electromagnetic field enhancement near the shadow side of the spherical particle is
clearly shown in Fig. 1. From Fig, I., the peak value of the normaIlized source function "or the
spherical particle is approximately 20.

Figures 2-6 show the internal normalized source function distributions for a, prolate spheroid
with incident propagation ungles of Obd = 0', 30', 450, 60", and 90', respectively. Figure 2 is for
on-symmetry axis incidence (Oba = 00). In comparison with the spherical particle case, the smaller
radius of curvature front and back surfaces of the prolate spheroidal particle creates shadow side
field enhancement (S,,,,, - 30) greater than that of the spherical particle. As the angle of incidence
is increased to 30', 450, 630', and finally, 90' (Figs. 3-6), the shadow side field enhancement remains,
but diminishes with increasing angle. At 0b, = 90' (Fig. 6) the peak value of the normalized source
function is approximately 10.

Tihe results for the axisynm metric corrugated particli, are shown in Figs, 7-11. For on-symmell!try
aXis i ncidelmce (Obd = 0{), as shown in Fig. 7, there is again strong field enlhan comezmt, greater
than that of the spherical particle, and similar to that of the prolate spheroidal particle. As the
angle of inlidence is increas•'l to 3(I0, 45", 6i0', and finally, 90 (Figs. 8- 11) the shadow side field
eihdim cemelnt renmins but is less diminished and shows all irregular angle of i ucidhmice dependence
in comparison with the p)rolate spheroid.
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IV. CONCLUSIONS AND FUTURE WORK

For the choice of parameters considered (a = 10.0, ft = 1.33 + 1.OX10- 8 i), shadow side field
enhancement within a particle apparently does not require a pure spherical geometry, and can occur
in even "nonstandard" geometry particles such as the axisymmetric corrugated particle. Further
calculations will be performed investigating effects at both higher and lower size parameters. Other
particle geometries will also be considered.
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ABSTRACT

It is well known that the Rayleigh approximation to extinction, scattering and ab-
sorption efficiencies for spheres is limited to small size parameters, z, and small values
of ImIx, where in is the complex index of refraction. It is also known that the Thomson
approximation to these same efficiencies is valid for small x and m = oo. We have found
a powerful exact transform of the Mie coefficients, for both spheres and infinite cylinders,
that removes the rn related restrictions of the Rayleigh and Thomson approximations. The
resulting approximate series for spheres and infinite cylinders are valid for all m and small
x.

If this transform of the Mie coeffients and their series expansion were limited to spheres
and infinite cylinders, it would have only limited interest. However, this transform gener-
alizes, in an approximate form, to other convex bodies when a Rayleigh or Thomson.like
series can be obtained. These can sometimes be obtained by a method given by Stevenson
(1953). Series axe available in the latter paper for ellipsoids (which includes spheroids).
We will present results of a comparison between the newly obtained series and the exact
codes for spheres and spheroids.

1. INTRODUCTION

If a particle is geometrically and optically small enough, then a simple formula can
usually be found for the extinction and scattering efficiencies as well as the pl ase func-
tion. Such approximate formulae are usually called the Rayleigh t,pproximation to the
scattering'. If the particle is still geometrically small but optically very large, the Thorn-
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sonl approximation results'.
Often, however, a small particle may be neither optically small nor very large. This

creates a gap that has not been completely filled until now.
In this paper we demonstrate a powerful transform that bridges this gap for spheres

and infinite cylinders and, in an approximate way for spheroids.

2. THEORY

2.1 Spheres

We will first derive the general expansion of the Mie coefficients for small size param-
eters z, and show how the Raylcigh and Thomson expressions result.

Starting with the definition 3 of Q5ca and Q, t, the scattering and extinction efficiencies
respectively, we have

QMca =2 E(2n + 1){fIanI + Ib.j2} [1i

and

(2n -+ 1){Re(an + bn)} [2]

where a. and b, are the external field Mic coefficients. These Mie coefficients are given by

af 0- '(01X) On(W) v .(,/(pX) OftW,3)
01 = 10.•(V ) .(x) -- v0it(vOTX)¢ C (I) [3]

and VC,10 (0¢', 14 )?/'.,(X) - VI- 1¢-i,,( X) 0'(X)
=r) - y-•'¢b,(/"7) ,(x) [41

where e: and p are the relative diclectric constant and the relative magnetic permeability,
On, is the Riccati-Bessel function of the first kind and C" is the Riccati-Bessel function of
the third kind. Note that the b. coefficients are symmetrical with the an coefficients upon
substitutio.i of f for p and vice versa, Hence, we need only discuss a,, in detail.

Expanding a, and a2 in ::aallU x we obtain

3 + 2) x., -• + (f+) + 2) 5 7-+- 2

1 (111 2 + C3 (9;1,2 + 3511- 25)_--_ E2(70 + 150) + 200(2c-- 1) ÷.. +[5+~7 K-- (e + 2)a i

"1 0• (7 1
2.02



bn = ant e " 4

Expansions for higher order coefficients can also be derived. )or classic Rayleigh (p = 1,

ep))
2. m2 --- _ ____),_

=2 ~~~~~~ ~ ~~~~(rn2-I 3+ ,.(m --l(t-2) 2 x "4rn-1'z

S((m2 - 1)(m6 + 20mn' -20OM 2 +200)) 7 [.
+17-5) (, + 2)3

,,+ i(m' - 1)X+ +... (8]

for Thompson (e -* oo, j = 0),

2. 1.5 4s .
a- = 3 5+ 9X +7X -72X +... [9]

b= -ix3 + ix -&+... [10]

It is immediately apparent that as m - oo the Rayleigh expansion for either a, or b,
does not converge even for small values of x. Hence, the requirement for small optical
size ImarI. The Thomson expansion having no index dependency applies only to infinite
optical size. The problem with the Rayleigh series mathematically arises from the terms
in an+ with t2p and in b. with p2 e. If these terms were set to zero, the divergince problem
would disappear. We must, however, recover the lost information without reintroducing
the divergence pmoblem.

To do this rewrite an to isolate the material properties as

).(X) - Z'k)

Consider the result of letting p --+ 0 in the expression above (which will make all the e2 'P

terms zero along with others):

lima. = - 'k:,+) " [12]'U.0 Cn.(•) - { •-r }(.'(x)

To recover the full Mie coefficients, transform e in the above limit by

e (n + 1) tn(VEX) [131
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and by symmetry
A / (n + 1) bf(VrFX) =U [141

Both fn and U, can be considered as transformed material properties. Putting these new
variables back into [12] and expanding again in small x we obtainao = iQ -)X i'-11+). (e,_)2 ,

3 461+2 5 A + 2)2 /T+2

a2 I-71. (,6+2)1 ). +'"- [151

a2 =L C 22 -+1 X +'" [161
15 (262+3), .. (8

and again by symmetry
ba = an, 4 +-+ U.

Note singularities occur if and only if

= -(n+ 1)/n (17]

and
Un =-(n + 1)/n. [18]

which requires a real e (or real 1A). For all other values of 6 and U the coefficients of
series (151 and (16] are finite to all orders of x. Thus [15] and [16] are valid for all non-
real values of the refractive index. However, when the conditions [17] and [18) are nearly
satisfied many terms in [15] and [16) will be required before the series converges to a given
accuracy. For convenience in computations we can rewrite E,, as

C 2eF 3e(1 + 3F) (19]
( 1= (+F),2)= 2+6F-Fz2 ,[

with

F(z) zCot(z) -z and z= V'cex =(n-ik)x [20]

and
U, = C,, e /1

Since the 'Mie' coefficients for the normal incidence infinite cylinder3 are identical
to the sphere Mie coefficients apart from the arder of the Bessel functions involved, the
same procedure can be used to obtain a series for small particles independent of material
properties. Oblique ixkcidence can also be done but generates much more complicated
expressions.
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2.2 Spheroids

The above series [15] etc. by itsclf is interesting only from the classic nature of the

Rayleigh and Thomson series. However, the idea of transforming a Rayleigh like series,

(with the optical size constraint) into a series that is independent of the material properties

for many types of regular particle shapes would be of practical use. We show here that

this can be achieved, in some approximation, with oriented and randomly oriented prolate

spheroids.
The Rayleigh approximation (with arbitrary 1A) for oriented spheroids4 5,, QrV, is

given by
Qray = Q.sc + Qab. [21]

where b~c 83 OFbqar +1, 2 (1 O)(r22+ Cos 1,11) }[221

br sin 2B (1 + cos 29)3 -- p .- 2V (DI'71+ I' I')+ 2 U71I7i

Qab, = 4 Reli[P2 (n, +'+(1+ 2  (t)2 (+ 72 [23]

and where
P = Vcos2 0 + r 2 sin 2 6, a = 27ra/A, b = 27r#/A. [24]

Here r = a/b is the aspect ratio (for prolates r > 1 and for oblates r < 1), a is the length

of the semi-axis of rotation, P3 is the other axis of the spheroid, 0 is the angle between

the incident radiation and the a or a axis, A is the wavelength of the scattered radiation.

Furthermore 1 a 1

3(L 1 + 3(L 1 +

1 and 1 1
'72= 3(L2 + 7-2) = 3(L2 + [26]

and the form factors are defined for prolates (i.e. r > 1) as

L, (1= g2 ) 1 l+' 27

_ 2g

_1- L, 1
L2 -= L[28

2

g2 = 21- [29]

For oblates (i.e. r < 1) we have

L= +f 2  ftan-'f} [30]

L2 - 2 L, [31]
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m 1.

P - I. [32]

Normally, p = I in the above and hence t/• and q2' are both zero. The procedure, as
demonstrated for spheres, requires the full expression for the efficiencies, therefore we
retain the p terms.

Since the scattered wave at large distances from firite convex bodies can be approxi-
mated by a series of Riccati-Bessel functions, we will use the same material transforms, (13]
and [141, but with the arguments modified. The modification is simply an approximation
to the effective optical size of an equivalent sphere. For a given orientation this equivalent
optical radius, z, is [

rb [331
p

which is the same expression used in the eikonal approximation5 .
For randomly oriented spheroids the cross sections C... and Cab. must be integrated

over all angles. C.c,. is just [22] multiplied by irpb2 and similarly for Cab, from [23).
The efficiencies are then obtained, in the usual way, by normalizing the cross sections by
the average projected area. Before applying the material transform, the integration is
simple since ?71, nI , ?7 and q2' are independent of the orientation angle. However, after
the transform they become dependent which greatly complicates the integrals. Hence to
maintain a simple expression we will assume, at first, they are independent of angle and
correct, in an approximate fashion, later. This correction will be in terms of the spherical
average of the effective optical size, z. Integrating C,,,, and Cb, over sin(O) dO from 0 to
7r/2 and then normalizing we get

O• 16 b4r'•

an --- 8 b R • -- -. [{1, + I i~l + 2 (1q 21 + i-142 )] [3 5)
i and *=

where the nornmalizution factor is, for prolbt(s,

•= + "2 •n- [361

(= 1 , + • r2 [36']

and

1 1
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Note that in the expressions for £E and U1, [13] and [14], ff!,ux must be replaced by Y

which follows.
The spherical average of z is

Ve[- rb 1r2 sin( ) d9
10 P

Sbsin(g) for prolates, and [40]

b ln(f + for oblates.f

It is found, empirically, that the two latter expressions are good only for very small b and

that as b -- 1, i -- V/I7Tb. This is to be expected since the equivalent optical radius varies
with orientation angle and size in a non-linear way. Again, empirically (for prolates only),
a simple solution to this problem is to impose a power,as a function of b on the expression
in [40]. The situation for oblates is still under study. From this we finally obtain (for
b < 1),

= b [ i..() for prolates (41]

3. RESULTS OF COMPARISON

In this section we will demonstrate the accuracy and utility of the expressions and
ideas in the last section, First, we will discuss the conmparison of the Rayleigh [7], Thomson
[9] and our new series [15] with the exact Mie solution.

Figure 1 shows the Mie calculation normalized by the three series as a function of
size parameter. The series for Q.,. are calculated to fourth order in z and for a refractive
index of 500 - 500i which corresponds to metals in the mnllimeter wave region, When 17fx I
is small both the Rayleigh and the new series are excellent approximations. As expected
the Thomson series overestimates Q1.. by 25%. The situation reverses when Imxl is very
large. Now the Rayleigh series underestimates Q,.a by 25%. Note, however, that in the
intermediate range of ImxI, [15] is still excellent.

To show that [15] adequately models resonances we now choose an index with la'ge
real part and small imaginary or absorptive component. Figure 2 is a diagram of Qet as
calculated by Mie theory and the new series [15] for an index of 100 - 10-6i. Although
this index is extreme and not physical, it is used here to demonstrate that it valid for such
unusual cases. This emphasizes that [15] applies to arbitrary indices for small x. Notice
that not all resonances are modelled. This is because the higher order Mie coefficients have
not been used.

The effect of using the sixth order expansion instead of the fourth order can be seen in
Figs. 3 and 4. The cases are Qext for water at 33 GHz and 95 GHz respectively. It can be
seen that the sixth order corrects for both amplitude and skewness around the resonances.
Evidently, higher order expansion would improve the accuracy further. It is interesting
that the fourth order captures most of the detail, even around the resonances.
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Figures 5 and 6 are the same cases as for the previous two diagrams except that
prolate spheroids, with an aspeeL ratio 2, are considered instead of spheres. The exact
calculations are performed using the T-Matrix method6 . Also the size parameter x has
been replaced by the semi-minor axis b. As expected the features are similar but many
significant changes can be observed. Relative amplitudes and locations of the resonances
have changed as well as the underlying trend in the curves. The agreement, while not
excellent is still remarkable because of the simplicity of the series compared with the exact
calculation for such a large optical size. This large optical size almost makes the T-matrix
ill-conditionied. No such problem will occur for the series.

The accuracy of the series for the spheroid would likely improve if numerical integra-
tion of the series was performed instead of using the empirical formula [41). This and small
particle scattering from oblates is currently under study.

It is evident from the above calculations that it is possible to obtain series for the
efficiencies with out consideration of optical size, for spheres, prolate spheroids and infinite
cylinders. It is therefore clear that small particle phase functions can also be computed
for arbitrary indices by using the same, material transformed series.

3. CONCLUSIONS AND REMARKS

We have derived a series that lifts the optical size constraint that is inherent in both
the Rayleigh and Thomson approximations. This series has been applied to spheres and
in an approximate way to prolate spheroids. Comparison of the new series with the exact
Mie formalism show excellent agreement. A similar comparison between the T-Matrix
method and the randomly oriented prolate spheroid series shows that the agreement is
not as good as in the case for spheres. However, a substantial portion of the underlying
structure or physics is being modelled correctly. Additional work will be needed to improve
the approximation for randomly oriented prolate and oblate spheroids. A study of the
numerically integrated series, to randomize the orientation of the spheroids, will likely aid
in this direction.

Combining this approach with our previously described techniques5 ,7 , for approximat-
ing extinction, scattering and absorption efficiencies, we are obtaining simple formulae for
arbitrary materials, particle sizes and aspect ratios.
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Fig.3 Q for water spheres at 33 GHz. Refrattive index m = 8.743 - 0.64001.
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Fig.4 Q for water spheres at 95 OHz. Refractive Index m = 8.075 - 1.8241.
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Fig.5 Q.,i for water spheroids, r = 2, at 33 OHz. Refractive index m = 8.743 - 0.84001.
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Referenices 13

Bodies of revolution are struictuires, including aero:,o1 particles which are filbers and
flakes, whlich have al~l a~xis of sylinniettry with tite p~roperty thant if one examfifl(Ž the scatter-
ing body before and after any p~artial r(.tittion albotit. this axiS, an impinging electromiagnetic
W11Ve can'l see no differenice. Tit,(ev let romagn etic interaction problem is complJ~icatedl by the
fact, that every portion of this body (of revolution is it is stimulated by thev impinging
radliation coliniiiiiiicutes with every' otheri poi-tioii of the body of revolution. Becals, of the
rotational symmletry, it svenis pruden~it, to repireselnt thle. comiponents of tile indiiced elvetric
and nmagnetiv fields as a Fourier series andI solve anl integral equation formulation of the
scattering problen) by solving for Fourier coinpoleonct s of p.iecewise polynominal itlpl)oxiniia-
tions of the field components within each cell of the body. This Fourier analysis involves
trigonomie~tric. integrals which v'hen transformed to the compllex plane would involve anal-
ysis of functions definled onl a Rielinannl surface~. 'We provide~ in. this paper' a ne(w Waly of
evalluating these integrals using only information around an essential singilmi~ty.

Bodies of revolution, also include, bodies that have sphevre's, cylinder"', oblatce or prolatte.
Sphieroids, or at toris ats lcmindaries of at mlaterial that resp~onds to the radiation, Analyzting
the latter may have soniv beniefit inl the controlled thermnonuclear fusion prob~lemn ([1]) as it
design for it material with ultra high absorp~tion efficiency could be obtained inexpensively
by coinputel ana~lysis ([21). The low cost of computer experimenitatioin may also permiit ofle
to (lesigfl an uilt raviolet light ab~sorbinlg aerosol that will protect man and animalsh- froml tile
c-omling o'Aone depletionl problem The muterial body maliy have tensor p)roperties, b:ut the
body, together with it's properties is still unchanged by aliy pa1rtial rotation about the auxis
of syuinictry. This could inc-lude, for example, a tensor mnaterial which has onie property
inl thle direction Of the( alxis Of rotation and another p.roperty inl all directions going radially
outwarid fromi this a'xis of symmetry. Here, one might think of cutting a slihem'e out of
a1 cylinderle compjrise d of Closely packed dielectric, needles; externally to Visible light this
spliere might look to our eye like aniy othier rounil aerosol, but to electromagnetic waves
Jpolarize' ill thme (Iilth'tioli of thev axis (mnd conlsequently parallel to these soft, dielec-tric
need(les) unid to those (olvetroninmgnticti waves8 politriv/ed iii a direction 1wl-wll)Idivl~lLI to the
atx i of r 'volmith mm, thle resp~olnse wou 111 c colipIletely d ifferenit. This nuitteriiis are mv
ill liqui d crystal1 com meejA 115whichi 1may in divt futulre ben 1 ised as at healthy replIlv emmient for.
vidvo displatys. Tlm details of thle commimectioli I hetweenl the integrals discus~sed in this paper
amli I eect'ro hillmilgmeth initerliction pro1 deiis arv founmd ill imany sources'. ([211) but is lucvidly
eXIluil e I ill Gl issomi an,1d Wi lt~on ([131). W 'XI exlainmm v 1 liit lenthlod of evallatting in tegrals
of expcif~i iiial p olynom'niaitls of Iidge naic fuctmi itneis of t rigonlomeitr'ic functions from 0 to 21r.

1 Exact Evaluation of Integrals

Weiit'ro )(limet a1 ft mmct-ioim ý Whichm represenlts' time (istIlvtc 1 wtween two Iloinits, rep)mescited
inl vyliimdrical voorl(tta.(s ats (f), 0, Z ) and ( 1), So. 1.111ttit
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where tb is the difference between 0 nald H. TIle iitvgral idmeir c('o•heratioll iS*

SC ..xp(ik ) co.(mi )d¢ (1.2)Y',,) 0 V •

where
- (A - 2Bcos(O)) (1.3)

where
A' > 40B' (1.4)

where A is positive and m is a nonnegative integer. The function ý defined by equation (1.3)
is an algebraic function defined by a Rieniann surface if you make the normal , xtension to
the complex plane by rewriting equation (1.3) in the form,

ý' = (A -D.(C+1/() (1.5)

where if C is equal to exp(io), then

2.cos(4) = (+ 1/() (1.6)

The rational function ý2 has a simple pole at the origin and one -ero inside the unit circle
and another zero outside the unit circle. The algebraic function ý is defined by a Ricmann
surface with a Branch cut from the orgin to a zero,

A - %v[A -- 4B2 2B (17
2.B A + (A 2 - 4B2 (1.7)

of the function Q' that is inside the unit circle

I(I = 1 (1,8)

and a branch cut from oo to the zero,

A +V-2-JA -4 RB2
(2 = A A2. 4W (1.9)

that is outside the unit circle. If we use the arguMenMt fumietion (hefinld by

Arg(x + iy) = (1.1()

where if
V, = Vx, + y2  (1.11)

then, 0, the value of the argument function defined by equation (1.10) is sich tat,

'cos9(0) + ir.qin(O) = x + iyO0 > Ž < 27r (1.12)

We can use a Riemann surface to define the square root, of the lllerollotrl)hi, funwtion, •
defined by equation (1.9) to define the algebraic fun, ion ý or use the argunictit fulnction
Arg defined by equations (1.10) and (1.12)
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[B 
+I - -(, 11/2L~iI( -I ,,.,.p(i( 1/2)( A,.q( -~ C,)+ Arq1(¢ - (2) -- Ar.:( K)) (1 .1})

Thus, an integral of a holoinorlphic function of ý around the. unit circle will be equial to the
integral of the same function around a rectangle inside the unit circle wich rontains the.
slit from the origin to (,. We show how information around the essential singularity will
give us an exact, formula; our formula will be checked by direct Fourier analysis observing
th. /

(, _ 1 1.o( , ~ p•,lk.k.C(o,) (1.14)
(A -2. o~)'2 -B -7A= k=0

where

=ý (! j=, 2 j (1.10r)

which means that, we can think in termis of representing powers of ro.q(',i') as a Fourier

2 Reactive Integrals

An exact formula for the values of the reactive int•,grals has been obtained, and fur-
thermiore, the cost of finding the value of the reactive integrals, which were in all other
works (e.g. [21] and [131) carried out by a numerical integration scheme whose conmpu-
tation time increases directly with the 7n appearing in equation (1.2), is with this exact
formula independent of m. Furthermore, this exact formula depends only on values at
the esscntial singtularity expaision at ý equals 0. These formulas have been validated by
Fourier expansion and by numnerical comparison to 12 or more decimal places with the
straightforward numerical integration scheme described in the previous section, The first
essential singularity expansion has the form,

V) T ,(2.1)

We cal Xl aTlo( the fulilH u'i cos{() by thle(' I(ri(s

,S) [(-1)•2&i = + (2.2)

We i1ow Ise tli ('aC Iml u )otict and equa tions (2.1) and (2.2) to write
_ 1 [) 1 a\ 1.
S - 42 'Ckj P' ( ' (2.3)

" j=O ký-{

If w, (hefiln'
.1

D(1) CA_-PM' (264)
j k}
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then equation (2.3) implies that

There are two expansionis of even and odd powers of cos(O) which enable us to evaluate
these contour integrals. The even powers of cos are given ([17], p 24-26) by

cos 2.1(v)) =

22 I2 ( k, cos(2' (t - k)0k)} 2) (2.6)
"22 Lk~ot

and the Fourier expansion of an odd power of the cosine ([17], pp 24-26) is

Cos 2--1(0,) =

12 [-o ,2q -1I .cos((2.-q -2.-k -1)0)] (2.7)
22.-9-1

k=O 1=

If we assume that C is equal to exp(io), then we can use equations (2.6) and (2.7) and tile
relationship

f C~+ )'cvs(rnV-)dVp (2' cosj(t])cos(mtk)) do~ (2.S)

to evaluate the reactive integrals. We consider first the case where j is equal to 2. -? and
use equation (2.8) and equation (2.6) to obtain for positive even integers m not exceeding
2 -e the relationship,

L +c )24G (it + 1 ) d( = 21T ( e-r ) (2.9)
to evaluate the reactive integrals. In the case where j is equal to 2. C and

2e - 2k (2.10)

we observe that
j -rS k . 2 (2.11)

In considering the cmsc where j is equal to 2 q - 1 we use the fact that in the ce:ic where
ti is an odd integer and j is equal to 2 q - 1 that

LI ( + q- () ( ) 2r (2 q 1 m/2  (2.12)

We conclude that equation (2.5) implies that

f { •C)} cos.r(mr)dt/, =
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4rl ~ ~ + 2,+. j
DY(12. 27r ('+*j(2.13)

We next develop an expression for integrals involving sin(4)/1 by first observing that

sS.¢ + (2,14)

We then make use of the fact that

1/ [P-) (+ 1 ) •j () (2.15)AVr- 1)/2E
Lq=0

Multiplying the series given by equations (2.14) and (2.15) we see that

sin(4) _ 1 ~ f \
1 + (2.16)

where

E5" = . Pk') (2,17)
k=0

Thus, we conclude that

1/2 (--+r- cos(m+)4 =

01 q=O

By making use of the identity

(( - )2) = ( (j +i)/2 ) (2.19)

the fornmula (2.18) and th, formula (2.13) can be given a different look, but several different
numerical checks all agreed to inachine pre( ision, TheE formulas were checked by numer-
ical computation using Gaussian quadrature. In the case where the observation point is
close to the variable of integration or said differently when 2B is very nearly as large as A,
then the series can converge slowly, but they can still be evaluated accurately if one uses
Eulhr's method( of accelerating convergence of sunms ([i4], pp 201 - 207). The following
tabl' shows a weakness in the method without the use of accelerated convergence. When
1, and ) are b~oth equal to 1 and when z and i are both equal to 1.1 as in equation (1.1)
a10d we just use 139 ter'ns for the gecmietric series and we make use of the fact that. cos(ý)
divided Iy by is ilcrimnorphic and use the contribution to the reactive integral from the
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simple pole at the zero zeta, inside the unit circle given by equation (1.7) versus using the
Ricniain surfave concept with just a small nmnber of terms

Essential Gaussian Pole and Mode
Singularity Quadrature C = 0 Index
Contribution Integration Contribution

139 terms
3.724 3.726 3.726 1
2.842 2.844 2.844 2
2,110 2.112 2.112 3
.472 .4739 .4739 8

For the difficult cases described in the above table over 6000 thousand terms were used
along with accelerated convergence and 15 decimal place agreement between the three
methods was achieved. The following table shows the capabilities of the formulae when
augmented by Euler's method for accelerated convergence for the case where p is equal to
1, A is equal to 1+0.2, z is equal to 1, and i is equal to 1 + 0.2. Using the Riemann surface
concept and carrying out an expansion about the essential singularity we have

4n cos(mn) do

SINGULARITY ENHANCED exp(imip)
EXPANSION GAUSSIAN MODE

METHOD QUADRATURE INDEX
3.75346548 - (1.5112968)i 3.75346548 - (1.5112968)i 1

.382950948 - (.0520636761)i .382950948 - (.0520636761)i 10
.0291669710 - (.00285093482)i .0291669710 - (.00285093483)i 20

Also, the terms of the expansions of sin(ý) and cos(ý) can be determined by exact formulas
by making use of the J. nsen Voller's formula, a variant of the Faa Di Bruno formula ([9]).
For example the term Co appearing in equation (2.2) is given by

Co = cos(v'A-) (2.20)

An alternative representation of these integrals in ternis of known special functions is
found in a much more general setting in Chapter 7 of (Carlson, [5]), where the integral

I(r,m) = /(A - 2. Bcos(1p))r/2 .cos(mV))dO (2.21)

arises as a special case, and Carlson's condition for rapid ordinary convergence of the series
which states that the ratio

A-2.B

"= A+2B (2.22)
stay away from zero is equivalent to ours.
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3 Surface Integral Equation Methods

In this section we shall show how in the case where the irradiated structure consists
of hoinogneous regions which are delimited by diffeonlorphisms of the interior of a sphere
or a torus in three dimensional space (in the body of revolution case) to represent the
solution of the scattering problem as the solution of two combined field integral equations
with integral operators formed from from the Green's functions defined on opposite bides of
the separating surfaces, The surface integral equation methods reduce the computational
complexity in the sense that they require discretization electric and magnetic fields defined
on a surface rather than on a region of three dimensional space. In a general nonrotationally
symmetric setting the development which follows is valid for regions which are the interior
of diffeomorphisms of' N handled spheres.

3.1 Combined Field Integral Equations

Consider a set n in RI with boundary surface Oi on which are induced electric and
magnetic surface currents J. and Mtf. If we have a simple N + 1 region problem, where we
have N inside and a region outside all N bounded homogenous aerosol particles corresponds
to the region index j being equal to 1 and the region inside corresponds to j values ranging
from 2 to N + 1, then if the propagation constant kj in region j is defined also by a function
kj, naturally defined on a Riemnann surface as the square root of,

k1 = w 2pe - iWU (3,1)

For a Debye medium (Daniel, [11]) the branch cuts are along the imaginary w axis. For a
Lorentz medium particle (Brillouin, [4], [29]) the branch cuts are in the upper half of the
complex w plane parallel to the real axis. where a, e, and a are functions of frequency
that assure causality and that the radiation does not travel faster than the speed of light
in vacuum. There are two Helmholtz equations, one for the interior of the larticle and the
other for the exterior, defined by

(A + kj' )G, = 47rb (3.2)

where Gj is the temparate, rotationally invariant, fundamental solution ([16]) of the
ilelihiloltz operator. We let

.11J2 (3.3)

M,=AMJ= U-M 2  (3.4)

w,,cr( we axisuin that the surface S(,,2) separates region 1 and region 2. Wc generalize
eqtUatioZ1s (3.3) and (3.4) inductively by saying that for any surface Sij;) separating region
j frow rcgion j where

j<) (3.5)
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we havej = j (3.6)

and M,=M= M; (3.7)

We define W = {(j,J): S(.;) is a separating surface} (3.8)

where j is less than 3, We get a single coupled, combined field integral equation which

describes the interaction of radiation with the conglomerate aerosol particle or cluster given

by

i× X , { (× J f f(i)(,,. .) + ,3 .G,(r, )) da(:)
U(Jr 1r)• f(j j)

+ ~-radj j(div, - J) + d~~J+

(4 ir) cur (Jfs();) IJA-(f9 (G, (r, iý) + G, (r, f )) da(P)) }(3.9)
In addition to equation (3.9) we need equation involving the magnetic vector Hinc of the

stimulating electromagnetic field which is given by

n {Q) j, ]Aif) (e Gj (r, i) + f 2 G, (r, ý)) da(iý)

+ radwf J(div. grad~(~~ + G3(rfj da(P) }+
4 curl (j 4f!() (Gj(r, f) + Gj(r, fc)) dtt(i)) (3.10)

Once the coupled combined field system (3.9) and (3.10) is solved for .1 and M', the surface

electric and magnetic currents respectively and we define the surface electric charge density

by ([13], p 7)

PM = [iv,. X(,)] (3.11)

and the surface magnetic charge density

i [,i . • ()] (3.12)

where div, is the surface divergence. Now for each region index j we define

J(j) = {: (j,J) E (3.13)
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where I is the set of all indices of separating surfaces defined by (3.8). We now need to
be able to express the electric and malnctic fields inside and outside tile scattering body.
We first define the vector potentials Ai and Fi by the rules, ((13] [21])

Aj [7r j f i( G, (r, iF)da(f) (3.14)

The scalar potentials are defined in terms of the electric charge density (3.11) and magnetic
charge density (3.12) by the rules,

[(Pj. (f I 1 4e JPý)Gi(r, )da(f~)] (3.16)

and~It E~1 r 3e.1rj [(1 L(j3 J;(f)Gi (r, F)da(f) (3.11)DD Ud

We now can define the electric and magnetic vectors inside the region j in terms of these
potentials (3.14), (3.15), (3.16), and (3.17) by the rules,

- -iwA'(r) - grad(tj(r) + lcurl(fj)(r) (3.18)

and 1 -.

II,= iw.~j(r) - rad('P1 (r) + Tcurl(AI)(7') (3.19)

Similar equations apply outside the body, by there the fields represented are the differences
9[ and H' between the total electric and magnetic vectors and the electric vector E,", and

the mxagnetic vector H~"' of the incoming wave that is providing the stimilation. Thus
([13]) we. see that outside the body,

- iWA,1(r) grad(iO(r) + 1curl(A1 )(r) (3.20)

and 
- W I r r d T~ ) + 1 c r( X ) ?)( .1

These equations generalize the formulation of Glisson ([13]) to a three dimensional struc-
ture whose regions of homogeneity are diffconorphisms of the interior of the splwire or a
torus in R'. If the scattering structure is not a body of revolution, then the region may be
a diffeomorplh of an N handled sphere.
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4 Zeros of Functions of a Complex Variable

Important design prolblems can be solved with good algorithms for finding zeros of entire
or meromorphic functions of a complex variable. One of the most important problems
attached to Riemann's name was the Riemann hypothesis. In this section we discuss some
novel homotopy methods ([6]) for finding zeros of analytic functions. The l)roblern of
finding modes of propagatin in an anisotropic, magnetically lossy coating on a perfect
conductor ([10]) is related to th' problem of finding complex numbers z such that

A~z+BcoA.(/F) Cz + B 0 (4.1)

by moving this problem up to a higher algebra where the solution becomes transparent
and then following a homotopy path down to the solutions in the space of interest; this
permitted the authors to track propagation constants as magnetic properties went throtigh
regions of anomalous dispersion and the material thickness changed.

We consider here the problem of finding complex numbers z such that ,in(z) is equal
to z. Since there are no polynomial functions P(z) and entire functions h(z) such that

i
- -cxp(iz) + -e"xp(-iz) -- z = P(z)exp(h(z)) (4.2)

2 2

it is clear from the theorem of Picard that there are an infirnite number of solutions of the
equation

i.Sin(z) - Z = 0 (4.3)

We transform the equation,
.sin(z) = z (4.4)

to an equation in another space by using tuxiliary functions so that the transformed
equation has the form,

,qi,,(A(,s)z(.s)) = (z(,,) + B(.m)) (4.5)

where
B(8) -8 (1,- 7ri)(i (4.G)

and

(O) - niri (4.7)

and
A(s) =(1 -,*) +±, (4.8)

so that when .4 is equal to zero, cquatioi (4.5) has thie folrnm,

,sin(i(--n.rri )) = ,4iu( ior ) = ( -uiri .-ý itiri) (4.9)

which is true, amI when .s is equal to 1, t0h1,1 as, t1h trivial ('quation (4.9) hol)1s at )l(' m (,11
of the homnotopy l)ath and if e(quation (4,5) is pIreserved all the way along the path, amn1 as
this equation has the forum

NIm(A(1) .,) = . B(1) (,3,10)
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at .5 equal to one, since
A(1) 1 (4.11)

1111d
B(1) 0 (4.12)

we see that we obtain a solution of equation (4A4) at the other end of the path,
Thus, the problenm is finding a scheme for assuring that the equation (4.5) is preserved

all the way along the path. Differentiating both sides of equation (4.5) we see that

z'(s) + B'(9) =

2os(A(s)z(s)) {A'(8). z(s) + A(s) z'(s)} (4.13)

Collecting terms involving z'(.s) we find that

{A(s)cos(A(s)z(s)) - 1} z'(s) =

B'(s)- z(s)A'(a)eos(A(s)z(a)) (4.14)

which leads, after solving equation (4.14), to a coupled system of differential equations in
x(s) and y(.s) with known values at .s = 0. Thus,

X'(s) Ra B'() - z(s)A'()cos(A(s)z) (4.16)
fa A(a)cos(A(s)z(.s)) -1 I

and
B(4() =)ag z(a)A'(s)cos(A(s)z(s)) (4,16)

=Iag1% A(s)cos(A(.5)z(,8)) - 1 }
where

X( ) ( (4.17)

These equations have been computer tested and orbits starting at x(O) + iy(O) equal to

x(0) + iy(0) = 0 + 2ri, (4.18)

for (xainl)lh , vIl( Ul1) lit
z = 7.4976... i2.7686.. (4.19)

5 Applications

The homotopy method described in the last section provides us with a powerful design
tool. By designing iaran.Iters in an irradiated toroidal plasma that will increase, its efhl-
ciency of energy ahsorp)tiOln by a factor of 1,000,000 ot,(! could in the light of the already
su(ressf, id Fusion reaction in England design practical, commercial fusion reactors which
w01tld re pqlace all other itealis of generating power, abate the global warming, awid give us
at mcuis., of laving saite drinking watcr 10 years from now, Perhaps a large aerosol which
Slwific'.'lyv aln)u•rb s dzuigerous UV light could be placed in orbit between the the sun and
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the~ (artli m- ono Wol .(I have 1tiouli,1 V)\V('.i to) (O1'lr' oui).t, H'~~i~t, g ivi t i( ) of large huh! 161itiic of
the oz~one free radical in any prescribed povL'ul of the Earthi's atilimphere, SijucV half of OIC
effort in solving integral equitltions of elect romnagn-fi (- seattering involves findinig entries in
a matrix op~erator represeritiint the di~tseetizatioil of tho initegral equatimiix (3.9) anid (3.10),
the exact formulas (2.13) and (2.18) for integrals of fmnctions defhwcld on ilicuinau surfa.ces,
have lna(. it easier to accurately determinie the interaction of elvetromagnietic. radiation
with penetrable bodies having rotational synmmetry.
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ABSTRACT

This article is to summarize an extensive theoretical computation on Mie scattering by

spheres whose size is distributed according to the Hansen-Travis' standard size distribution (I Ret.

3J; often abbreviated as the gamma distribution) within narrow limit, The results are presented in

graphical forms to show some Interesting lundings on rainbow and glory phenomena. Comparison

of the microwave experiment on scatteri ng by randomly oriented, rough particles I Ref. 71 and the

Mie scattering calculation for narrow size distribution of spheres, is also made. This :uticle is an

integral part of work planned for submission to public journals,

227



1. IjWZd f

Aerosols in the atmosphere are usually found in a wide spread of sizes, shapes and optical
properties, Many circumstances exist, however, that we may find fascinating optical phenomena
(such as the glory) resulting from the scattering by remarkably uniform particulates. We restrict
the discussion here to spherical particles and assume they have the same refractive index m = m' -
im". In the following Sec. 2 we briefly explain the mathematics involved in evaluating the
scattering by spheres whose sizes are distributed according to the Hansen-Travis' standard size
distribution (or simply the gamma distribution [Refs, 2, 3]). The stable, efficient Mie codes [Ref.
8] are employed in all numerical calculations, Sec. 3 illustrates the rainbow intensity profiles for a
narrow size distribution of water drops around the effective diameter 2acff400 gm while See, 4

depicts the intensity and polarization profiles of the glory scattering by four types of narrow-size-
distributed H20 drops with 2ao = 12,5Am. Comparison of the microwave angular scattering

functions for randomly oriented rough particles [Ref. 7] with three types of the gamma distribution
is made in Sec. 5. Summary is made in Sec, 6.

2. Mie Theory Evaluation of the Scatterintg by Size-distributed Spheres.

* For the distribution function we take the Hansen-Travis' standard size distribution (often

abbreviated as the gamma distribution [Ref. 3'D, so that the particle number density n(x) at the
particle size parameter x = 2naA is :

n(x) = const, x (13b)/b exp (2.1)

where b denotes the effective variance of the distribution, which is it measure of the spread of n(x)
around the effective size pairameter x0 • 2: kA. 1,to is the effective particle radius, corresponding to

a certain mean radius of the spheres,

* Th. perpendicular and parallel components of Mie scattering intensity for single sphere are

respectively IRefs. 1, 2, 5, 61:
.2n+1 b~~~~)l

n'n+I) (2.2)

i~z~xmO)= I-n+-L

n~1 n(ri+l)
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Ft=cosO, Xn() - dPln(l.) d dg, 'n(l.) = gnn(g) - (I-l, 2)d~nn~(p) / dp, and Pn(l.) is the n-th order

Legendre Polynomial of .

* The corresponding scattering intensity components for the size distribution are evaluated by

integrating (2.2) over x according to the weighting function n(x) of (2.1):
X2 12

f1 - , i(x,m,O)n(x)dx / n(x)dx
X1 X1 (2.3)

X2 X2

1 2f '2(x,m,O)n(x)dx / f n(x)dx
Xl Xl

*Expressions for the total scattering intensity for unpolarized Incident light and the degree of

polarization of the scattered light from the distribution are then:

S11 = (I + 12)/2
(2.4)

P n (I - 12) / (11 + 12)

By virtue of the exponential dependence in (2.1), the integration limits x1 and x2 in (2,3)

are chosen In such a way that both n(xI) and n(x 2) fall off from n(x0 ) by four orders of

magnitude, thereby contributing little to the integrals, iLe., to the scattering. The smaller the value
of b, the more rapidly n(x) falls off from n(x0 ), and thus x t and x2 get closer to each other and the

distribution becomes narrower. Also, in (2.3) a smaller number of divisions, ndiv, is needed for
the interval (x1, x2 ). For example, b=0.005 gives a rather narrow distribution so that x, = 0.71x.

and x2 = 1.32xe, and ndiv = 40 was found to give fairly good convergence of (2.3). We also
noticed then the further increase of ndiv beyond 1 div > 160 did not improve substantially the

accuracy of evaluating (2.3),
The efficient Mie codes described in [Ref. 81 were employed to carry out the integration

(2,3) for the size distribution. Due to the numerical stability, only the 8-digits, single-precision

arithmetics (on VAX 111730 or VAX 1 l/75 computers) Mie code was found adequate to cover up
to x0 - 7000 in particle size. The CPU time T required for a typical calculation on VAX 11/750

was also clocked:

T- 0.63 millisecond • x* n (# of scattering angles) (2.5)
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3. Rainbows by Water Droplets of Narrow Size Distribution

With a small effective variance, b = 0.005, we depict in Fig. I the rainbow intensity
pv,1,iles at three visible wavelengths for narrow-size-distributed water droplets with an effective

diameter 2ae - 400 Aim. The MiQ results of S 11 for the size distribution are shown by continuous

curves, while the Airy theory S 11 [Ref. 8] for single size Xe are plotted by dotted curves. The

primary rainbow for which p = 2, is on the right-hand-side, and the secondary rainbow (p= 3) is
on the left. Fig. I is selected out of many similar plots for various sizes, and we summarize only a

few outstanding features:
(1) Compared to the Mie rainbow profile for single-sized droplets, the Mie SI1 profile is

considerably smoothed out even with such a narrow size distribution. This smoothing is
accompanied by the smearing out of the supernumeraries of both p= 2 and p - 3 rainbows,
especially at the 2nd and higher order supernumeraries.

(2) The Airy and Mie theory results agree strikingly well, both on the magnitude and the

position of the main peaks of the primary (p = 2) and the secondary (p - 3) rainbows. In

contrast to the long hours of Mie computation by VAX 11/750, the Airy calculation

requires less than two minutes by a 1(X) times slower PDP1 1/23 computer. We reiterate

therefore that Airy theory is a powerful tool in laboratory study of rainbows.

4. Glories by Water Drops of Narrow Sizeg jtijo

More elusive, but no less important than rainbows, are the glory phenomena, the enhanced
backscatterings near 0 = 1800, excellent expositions of which based on single-sized droplets can be

found in [Ref. 4, 61. Briefly stated, a glory phenomenon can he seen by an observer as rings,

which are often colored, around his own head's shadow on a water droplets cloud. We know this

happens only when the droplets are remarkably uniform in size and optical property. Using the
similar Mie scattering programs as in the previous sections, an extensive study has been made for a

number of effective variances b as well as effective sizes xe. We present, however, only one set of
glory intensity/polarization profiles for water drops of 2ac =12.5 Am, at three visible wavelengths
(Fig. 2). In addition to curves corresponding to the effective variances b = 0.(X)l, b = 0.005 and b

- 0.025, the glory profiles due to the single size with 2ac = 14.5 .im are also shown for direct

comparison.
A few interesting features noted:

(1) As in the case of rainbows, the effect of the droplet size being distributed is to

smooth out the glory intensity/polarization profiles, and the smoothing is more

extensive as the effcctive variance b increases.
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(2) The number of glory intensity peaks/troughs in a given backscattcr argular itet-rval
increases with the droplet size x,. Unlike rainbows, the glory can only be clearly
seen for relatively small size xe. This is because the angular spacings between
successive glory rings become so small for large xe (> 1000) that only 'I small

spread in droplet size would smear out the profile.
(3) The intensity profiles for the size-distributed droplets are noticeably different from

those for the single size, both in magnitude and in the angular positions of

peaks/trougihs.
(4) A distinct glory is observable for b < 0.025, especially near the first ring closest to

0 = 1800. With b = 0.025, the second higher rings are considerably smeared out.
(5) The glory light is positively polarized (Pol - + 50%) near 0 - 1790. This angle

depends slightly on xc (i.e., get closcr to 0 = 180 ' as x0 increases), but is rather

insensitive to the value of b.

(6) Except by the straight Mie computation or via the complex angular momentum

theory of Nussenzveig-Kahre [Ref. 41, no systenvtic explanations are as yet

available for the glory phenomena,

5. CmIparison of Microwave Scattering by Randomly Oriented Rouagh Particles with Mie
Scattering by Splieres of Narrow Size Distribution

Extending the similar Mie calculations as in the preceding sections, we now turn into a

closer look at the microwave scattering by randomly oriented rough particles 'Re. 71, where we

had also reported the comparisons with both single-sphere and b = 0.005 gamma-size-distribution

Mie calculations.

Each large data symbol in Figs. 3 & 4 represents the averaged microwave data at each 0

and polarization setting (11, 22, or 12) over 272 random orientations of each target, %hose particle

shape is shown at the figure's upper right corner. xv denotes the volume-equivalent size
parameter, and thie two particles shown are both efficient scatterers for having the volume-
equivalent phase shift parameter Pv = 2 . x, - (m'-1) near 4, i.e., near the first mnjor resonance.

Both particles look like spheres of roughened surface; hence the name, "rought particle."

II1 is the intensity of scattering when both the transmitter and receiver polarizatins are
vertical, 122 is for both polarizations being horizontal, and 112 (= 121) is where one of them is

vertical but the other is horizontal. In general, 112 *( 0 for nonspherical paticles. Even thofugh its
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magnitude is rather small compared to III or 122, the correct expressions for the total intensity SII

for unpolarized incident light and thc degree of polarization, P, have to take 112 into account:

SI1= 1 (111 +122+2112)
(5.1)

P - (111 - 122) / (111 + 122 + 2112)

Continuous curves in Figs. 5-6 are calculated by Mie theory for the gamma-size-distributed

spheres with xe - xy and with b = 0.001, b -- 0.005 and b = 0.025, respectively. For readability,

the b = 0.005 curves are accented by*--,--, which seem to give the closet match to the observed

microwave data.

Prief summary on the comparison:
(1) For both rough particle shapes, the intensity component n11 is rather well predicted

by the narrow size distribution of spheres having Xe = xv. The match between the

experiment and theory is perhaps at its best with b = 0.005.
(2) Similar match also exists for the intensity components 122, except in the larger

scattering angles: 0 > 800, where the theory tends to overestimate the 122

magnitude.

(3) If the rough particles In [Ref. 7] for other sizes are included, the gamma-size-

distribution Mie theory gives, in general, a larger backscatter intensity than the

experiment.
(4) For the particle size in Figs. 3 & 4 (or smaller), the polarization by rough particles

can be well approximated by the gamma-size-distribution of spheres, but the best
effective variance b to be employed is not well defined.

(5) Since the best match between the experiment and the theory is in 0 < 801, wherein

most of the scattered energy is directed, it is now clear that the asymmnery.fitor of

scattering by rough particles is well approximated by the gamma-distribution Mie

theory.
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6. SUMMM
The present Mie calculation work for the narrow-size-distribution of spheres led to the

following conclusions:

* Rainbow intensity profiles can be well predicted by the classical Airy theory for particles as

small as xe - 200. Its match with Mie theory is particularly excellent at the first peak and a

few supernumeraries, both in magnitude and in positions of the peaks. Since Airy theory

is much simpler to evaluate than Mie's, it is obviously a powerful tool in characterizing a

particle.
* A realistic explanation of the backscattet glory phenomena may have to take the size

distribution of droplets into account. We demonstrated that the Hansen-Travis' standard
size distribution function (the gamma distribution) was a very useful model to represent

such a distribution.
* Mie computation of scattering by gamma-size-distributed spheres was shown to match very

well the observed angular scattering by a rough particle with xv = xe, especially at forward
angles 0 < 800 where the scattered radiation is concentrated. Thus the Mie theory would

provide precise information on the asymmetry factor of scattering, which is also a crucial

information on a radiative transfer problem.
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Curves are by Mie theory for Hansen-Travis' standard-size-distributed spheres
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Abutract

Simple and efficient trial fields are developed for the transverse-magnotic
plane-wave scattering from penetrable cylinders with impedance boundary
conditions. The trial fields are capable of satisfying the boundary conditions, and
incorporate a suitable shadow-imitating factor with an adjustable parameter. As
is explicitly demonstrated for this test problem, when such trial fields are
employed in an appropriately formulated Schwinger-type variational principle,
accurate scattering amplitudes and cross sections are obtained for all size
parameters and arbitrary scattering directions. Further investigations are
underway for the more difficult case of transverse-electric polarization.

Introducidon

This work is an extension of the previous variational calculations involving

idealized, impenetrable scatterers [1-11] to more realistic penetrable scatterers
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with impedance boundary conditions (IBCs). It was shown earlier [1,2,5] that the

so-called boundary-Born trial functions with the built-in capability of satisfying

the homogeneous Dirichlet and Neumann boundary conditions (BCs) yield

reasonable broadband accuracy for a scalar plane-wave scattering from a

perfectly-conducting cylinder or a hemicylindrically-embossed plane. However,

the large size parameter limits (ka >> 1, whore a is the cylinder radius, and

k a 2 / A is the wavenumber, with A being the wavelength of incident radiation)

of the variational scattering amplitudes in the forward and specular direction

were incorrect. In addition, the variational results were contaminated with

spurious wiggles or spikes at moderate and large size parameters. Later, upon

realization of the crucial role of the shadow-forming wave in forward scattering

[12), it was found [73 that, for scatterers with Dirichlet boundary condition,

premultiplying the boundary-Born trial function by a simple shadow-imitating

factor not only corrected the large size parameter limits but also effectively

removed the spurious spikes and wiggles. This was explicitly demonstrated for

simple test problems such as plane.wave scattering from perfectly-conducting

cylinders [71 and hemicylindrically-embossed planes [8], as well as soft spheres

[9,10] and prolate spheroids [11]. Very accurate variational results were obtained

for all size parameters and arbitrary scattering angles, For scatterers with

Neumann's boundary condition, the boundary-Born trial functions with simple

shadowing are not as accurate, and further Investigations are underway.

In this paper, after a brief discussion of BNs suitable for penetrable

scatterers, the Schwinger-type variational principle and boundary-Born trial

fields with simple shadowing are introduced and discussed for a special problem

of plane-wave scattering from an infinitely-long impedance cylinder. The cr3Vs-

sectional view of the problem is depicted in Fig. 1, where the axis of a cylinder

having radius a is along the z direction, ki, k, are the in-cident and scattered
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propagntion vectors, respectively, and 0s is the scattering angle. The usual polar

coordinates p, 0 are used to specify an arbitrary point in a plane normal to the

cylinder axis. Only normal plane-wave incidence is considered. [It is

unfortunate but, unlike the idealized case of perfect conductor, a general three-

dimensional (3.D) problem of oblique incidence cannot be reduced to two scalar

(i.e., transverse-magnetic (TM) and transverse-electric (TE)) 2-D scattering

problems even for a homogeneous impedance cylinder.] Without loss of

generality, the incident plane wave propagating in the x direction is assumed to

be of unit amplitude.

It is worthwhile to notice at this point that our approach to developing

mathematically simple and physically plausible trial fields [13] by incorporating

the essential physics inherent in scattering processes [1,2,5,7,8,14] is a generic

one and is not limited to special cases of scattering problems, We are interested in

scattering from canonical separable shapes [15,16] because manageable exact

solutions are available for these scattering problems, so that the variational

calculations can be tested analytically and/ror numerically for all size parameters,

scattering directions, and polarizations.

The scattering problem can be defined as the solution of the Helmholtz

equation for a plane wave normally incident on a cylindrical cbject where certain

BCs are satisfied, At this level, the present investigation examines whether the

use of "boundary-Born trial fields with shadowing" can produce all. frequency

accuracy in variational solutions with the standard Leontovich BC and wiah the

curvature-dependent IBC. In other words, our goal is to test the efficacy of our

trial field design procedure, which is based on physical i-,iiht. At a different

level, however, one can be confronted with the need to calculate the scatter;r, ut

an electromagnetic field from a penetrable scatterer. In that event, ont is

interested in whether IBCs are a reasonable approximation to the rigorous BCs,

241



These latter issues are explored in the next section and the variational procedures

are tested in the final section.

Boundary Conditions for Penetrable Scatteda

Penetrable scatterers are represented by dielectric and/or magnetic objects

in electromagnetics and by elastic bodies in acoustics. The rigorous boundary

conditions for such scatterers are well known [12,17,18]; e.g., in electromagnetics

these consist of the continuity of tangential components of the electric (2) and

magnetic (P7) fields at the scatterer boundary. Generally, this requires

knowledge of the fields both outside and inside the scatterer, and thus complicates

the problem, For the problem of plane-wave scattering by an infinitely-long

circular cylinder at normal incidence (see Fig. 1), the rigorous boundary

conditions can be written down for both TM(R T Ti') and TE(I ' TU)

polarizations as

=°uts =inis , yo I TM( VwE )

= aSwit en J " TE= Vw H(1)

where V/ represents the electric or magnetic field component along the cylinder

axis, eo,e and yo,qu denote electric permittivities and magnetic permeabilities

outside and inside the cylinder, respectively, and the normal derivatives are

evaluated at the cylinder's surface, p w a.

On the other hand, significant simplifications usually arise if approximate

boundary conditions, such as IBCs, can be employed, since these involve fields

only outside a scatterer characterized by relevant surface impedance. The

(conventional or standard) Leontovich IBC in its simplest form is [19,20J

- •.•) = ZS(t )(2)
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where Z, = ý-y/ c is the surface impedance of the scatterer, and Ai is the unit

vector in the outward normal direction.

In many practical situations, the concept of surface impedance as a

boundary condition is a suitable approximation to the true physics of the

scattering problem, being generally applicable to the so-called locally-reacting

surfaces, examples of which are well-known in acoustics as well as

electromagnetics [18]. In particular, it has been used to model scatterers with

high but finite conductivity, to model surface roughness, to account for coating

layers that produce microwave absorption, and to model scattering from

overdense plasma [15,211,

For the cylinder scattering, the Leontovich IBC reduces to

dy'u r/Z,TM (lvmE g)
dJs +ikfl[iI =0 with n/- (3)
dn s s Z, TE (v/=H,)

where Z = Zr m Z8 / Zo is the relative surface impedance, and Zo = 4A=0 / so

120r (ohms) is the intrinsic impedance of free space. A time variation e-iOt has

been assumed, with co being the frequency of the incident wave. In this paper, we

shall consider the case of a nonferrous (QI - o) metallic conductor or a lossy

dielectric for which I Z8 I < Z. Then the relative surface impedance can be

conveniently expressed [221 in terms of the dimensionless skin-depth parameter

k3 as

Zr =(1 - i)k / 2 (4)

where 6 a*2 / •o)•a is the skin depth, and a the conductivity of the scatterer.

Note also that in this case, the complex refractive index of the material relative to

free space is simply the reciprocal of the relative surface impedance, i.e.,

N= I/e/ = 1/ Zr = (l + i) / k. (5)
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The Leontovich IBCs are a valid approximation to the rigorous boundary

conditions in scattering problems when the following three conditions [20,221 are

satisfied, viz.,

INI>> 1, (6a)

thn Nlkamin >> 1, (6b)

where amin is the smallest radius of curvature, and

(t1/18) 2 >> 1 (6)

where I is the distance to the nearest significant source. For the problem under

consideration, the last requirement is automatically fulfilled, and the first two

can be stated as

(k5)2 << I and 6 / a << 1. (7)

More specifically, extensive numerical calculations [23] indicate that when kS :

0.141 and 8/a 5 0,435 the Leontovich IBCs are expected to provide accuracy with

-1% error at all scattering angles and 0.5 : ka ! 500.

Generally, for scatterers of larger values of curvature and surface

impedance, more sophisticated curvature-dependent IBCs provide a better overall

approximation [221. For the cylinder case, these are given by the same expression

(3), except that now

Z = (8)Zr(I +iZr/2ka)-, TE.

Note the explicit dependence of Z on the radius of curvature. For small surface

curvatures (large size parameters) this Z tends to the usual Leontovich form,

which therefore can be considered as the zero-order term in the expansion of the

surface impedance in terms of the curvature [241.
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There are different forms of curvature-dependent IBCs available in the

literatnr•e [22,24,251, some of which were originally developed by Leontovich [19].

Our numerical and analytical asymptotic analyses show that the choice made in

Eq. (8) yields the correct ka-dependence (albeit with an incorrect factor) of the lead

term in the small size parameter expansion of the scattering amplitude T defined

as in Ref. 16.

Figure 2(a) illustrates the effects of BCs on the TM forward scattering cross-

section by comparing results using the (conventional) Leontovich BC, Eq. (3), the

curvature dependent IBC, Eq. (8), and the rigorous BC, Eq. (1). These cross

sections were calculated with the exact Mie-type solutions derived by standard

separation-of-variables techniques in terms of Rayleigh series [16,22]. Three

markedly different values of the skin depth are presented to demonstrate the

importance of this parameter. Note that for the smallest skin-depth coridered,

kS = 0.005, the field barely penetrates the scatterer an-'. all three BCs yield results

that are indistinguishable from one another on the scale of plotting (top curve).

For larger skin-depth parameters and small size parameters the curvature-

dependent IBC provides a more accurate approximation to the exact BC than the

Leontovich BC does. All the results coincide at large values of the size parameter,

ka, approaching the same limit value of unity, as they should because the field

scattered at and very near the fGrward direction is the same in the high-frequency

limit for all cylinders of width 2a, regurdless of the cylinder material, incideriL

polarization, or cylinder geometric cross section [12,16]. For other scattering

directions, even though the three BCs yield almost identical results for ka >> 1,

these results depenld on the skin-depth parameter and polarization, as well as

scattering angie.
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Teuta of Variational Procedures

Our primary interest is not to investigate the relative virtues of various

IBCs for approximating the rigorous BCs, but rather •o develop and test simple

broadband variational solutions for a variety of BCM useful in praotical

applications. As noted ahowre, our previous experience suggestW B1's and

shadowing can provide physical insights that prove rewarding in the design of

trial fields. The fundamental question addressed in the rest of this paper is

whether these considerations continue to hold in the case of penetrable scatterers.

Thus we will concentrate on comparisons between exact and variational results

for a given BC, and not on the appropriateness of thaft DC for a given physical

problem.

In deriving efficient variational printiplea and trial fields for impedance

scatterers, we follow the approach deve (opd earlier r,1,2,7,81 for impenetrable

scatterers, Impenetrable scatterers ar., of (.,.urse, appropriately characterized by

the well-known [12] Dirichlet (or soft) BC

V/jS =0,t TM (Vt --- EZ) (9)

and Neumann (or hard) BC

- n.= 0, TE (V/M1 7 ) (10)

These idealized BCs represent a special case (Z8  0) of the IBCs in Eq. (3). The

formal structure of the IBCs as a combination of the field and its normal

derivative evaluated at the scatterer surface allows one to anticipate the

performance of the boundary-Born trial fields with simple shadowing (see below)

from the results for impenetrable scatterers [7-11]. In particular, whenever the

contribution from the field normal derivative to the IBC is dominant, as is the
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case for TE polarization, one can expect inaccuracies similar to those encountered

in the variational calculations with the Neumann BC. Our numerical and

analytical analyses corroborate this foresight, but will not be discussed here.

Physically, as for impenetrable icatterers, this discrepancy is due to the well-

established fact (26] that the creeping wave effects are significant for TE

polarization, and should be incorporated into the trial fields to render them more

accurate in the resonance region. Further investigations of this problem are

underway.

The Schwinger-type variational principle [12] for the scattering amplitude

for the impedance cylinder problem under consideration can be derived in a

straightforward manner and written down in the standard form

TV =NI/D (11a)

in terms of line integrals along the cylinder circumference2x
N o ,, do[ h ;,•,j7K( lo)e-ikS'•

Noh; 1 )K(; P=a (11b)

R cc fo do"~s "'p (lic=a)

D ,co do2 d4'[ K(A; 4i,)G(kI10 - A'I; n)R(k'; os)] (1ld)
J0 Jo ]p#=a

p=a

Here

K OC d / dplp=a TM (VI Ez) (12a)

]p=a ' TE (V, a 1z)(1224
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is the surface current density for each polarization, G is the effective Green

function given by a combination of the usual 2-D free-space Green function and its

first- and second-order normal derivatives, and h is a simple function of the

scattering angle, the impedance parameter, and the integration variable. The

quantities with tilde, ]V, k, and I, represent the adjoint solution, i.e., the

solution of the reciprocal problem in which the source and observer are

interchanged, so that the reciprocity relation [12,13] is satisfied due to the form of

Eq. (11a). Thus, the adjoint field i = fV(-ks) follows directly from the original

field V/ = pV(ki) by substitution 0i -+ 0s + xr. Using Graf s addition theorem [27J,

the double integral in Eq. (11d) can be reduced to a product of single integrals.

With the correct fields V1, q (and, hence, currents K, k,), each of tho

integrals N, ]&, and D, as well as their ratio (11a), will yield the correct scattering

amplitude T. Then, the differential cross section
IT12 / (ka)2 forward (0s=0),

€7 = (13)

IT12 (4 / rka) , otherwise (0, 0 0),

normalized as for perfectly-conducting cylinders [7], immediately follows. On the

other hand, when a trial field containing some error is used for V/ (and q1), the

variational-approximate TV with errors of the second and higher orders is

obtained by Eqs. (11) and (12). The first order errors in TV cancel out due to its

inherent stationary property [12], and this is potentially advantageous when

compared to other, non-variational approximate techniques.

In developing trial fields for the impedance cylinder problem we followed

the Ansatz previously devised for perfect conductors [1,2,7,8]. Namely, starting

with the simple Born approximation, i.e., just the incident plane wave, we

augment it by the same expressinn, but evaluated on the scatterer surface and

premultiplied by a simple factor, se that the resulting boundary-Born trial
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function is capable of satisfying the pertinent BCs. To provide for shadowing,

which is important for moderate and large size parameters, this trial function is

premultiplied by a simple, shadow-imitating function. The following boundary-

Born trial field with shadowing

Vi(A) = [1 - P(Ica)cos 01-e f (A)(eiki -Plpa)l (14)

is capable of satisfying the IBCs by virtue of flexibility provided by f(P). When

this trial field is substituted into Eqs. (11),(12), a variational parameter A(ka,7)

derived from f(A) is obtained, with its "optimal" value found from the stationary

condition af7V/9A = 0.

The shadow-regulating parameter P in Eq. (14) can be adjusted so that the

correct large ka-limit of TV(Og = 0) is obtained (7,8,10], i.e.,

TV(0S =0) T(Os =0), (15)

with the limiting value of TV derived by employing the asymptotic techniques

considered in Ref. 28. According to the physics of wave scattering (12], shadowing

is not present for small size parameters because diffraction causes the entire

scatterer to be illuminated. Thus, we set P3 = 0 for, say, ka < 1 by introducing a

simple ramp function, fi(ka). With such a ramp function the shadowed trial field

in Eq. (14) goes over to the original boundary-Born field for small ka's, which

yields exceptionally good results in this ka-region for both TM and TE polariza-

tions. It may be noted here that choosing fP in this way does not limit the

applicability of this procedure to problems where the exact solution is known. All

that is actually needed to fix fi(ka) at large ka is the generic, readily obtainable,

physical-optics result for forward scattering. In fact, the variational results
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displayed in Figs. 2 and 3 were obtained with a simple, physically reasonable

choice of

0, ka!<0.7,

/3(ka)= (ka-0.7)/(4.0-0.7), 0.7< ka< 4.0, (16)

L k, ka ! 4.0.

Numerical results for TM polarization show only minor changes with plausible

changes in the choice (10] of the cutoff ka values in the ramp function.

As for perfect conductors [7-11], incorporating the simple shadowing into

the boundary-Born trial fields not only corrected the large ka-limit of the TM

variational results for forward direction, but also effectively suppressed spurious

spikes and/or wiggles for all scattering directions. Thus, while the variational

results without shadowing appear to coincide with the exact solutions for the

impedance cylinders as plotted in Fig, 2(b), plots on a magnified scale (cf. Fig.

2(c)) reveal significant, ever-increasing errors of the variational results for large

size parameters, as well as the presence of spurious wiggles. The simple ramp-

function shadowing remarkably removes these discrepancies, as is illustrated in

Fig. 2(c). The unshadowed boundary-Born variational results for backscatter are

very accurate for small ka's, but are heavily contaminated with spurious spikes

for moderate and large size parameters, as shown in Fig. 3(a). Again, the simple

shadowing eliminates the spurious spikes (see Fig. 3(b)), so that the maximum

error of less than 4% occurs at ka w 2.1 for the most demanding case considered

of k0 = 0.3 (see Fig. 3(c)).

Summary

For TM scattering from an impedance cylinder, the shadowed-boundary-

Born trial fields that incorporate either the Leontovich or curvature-dependent
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IBC and simple ramp-function shadowing, yield variational results that are in

excellent agreement with the exact solutions for all size parameters and arbitrary

scattering angles. Similar results are expected for penetrable scatterers of other

shapes and compositions with applicable IBCs to be considered in future

research. For TE polarization, the agreement is reasonable but not as accurate,

with further investigations underway.

Acknowledgments

We thank S. Favin for his help vith the numerical coLmputations. This

research was suppor t  by the Navy under contract N00039-89-C-0001.

Referenoew

1. J. A. Krill, J, F. Bird, and R, A. Farrell, "Trial Functions in Variational
Calculations," in Proceedings of the 1982 CSL Scientific Conference on
Obscuration and Aerosol Research, edited by R. H. Kohl and Assoc.
(Tullahoma, TN, 1983) pp. 201-209.

2. J. A. Krill and R. A. Farrell, "The Development and Testing of a Stochastic
Variational Principle for Electromagnetic Scattering," in Wave
Propagation and Remote Sensing, Proceedings of URSI Commission F 1983
Symposium (European Space Agency, Noordwijk, The Netherlands, 1983),
pp. 299-307.

3 J. F. Bird, "Analysis of All-Frequency Variational Behavior of the Kirchhoff
Approximation for a Classic Surface-Scattering Model," J. Opt. Soc. Am. A
2,945-953 (1985).

4. J. F. Bird and R. A. Farrell, "Electromagnetic Scattering Theory," Johns
Hopkins APL Tech. Dig. 7, 58-72 (1986).

5. B. J. Stoyanov, J. A. Krill, J. F. Bird, and R. A. Farrell, "Broadband Trial
Functions for Surface Scattering with Detailed Analysis for a Simple
Model," in Proceedings of the 1986 CRDEC Scientific Conference on
Obscuration and Aerosol Research, edited by R. H. Kohl and Assoc.
(Tullahoma, TN, 1987), to appear.

6. J. F. Bird, R. A. Farrell, E. P. Gray, and B. J. Stoyanov, "Trial Function3
for Scattering from Surfaces of Arbitrary Roughness and Variational Test
Calculations," in Proceedings of the 1986 CRDEC Scientific Conference on
Obscuration and Aerosol Research, edited by Kohl and Assoc. (Tullahoma,
TN, 1987), to appear.

251

, i ' i i i i



7. B. J. Stoyanov and R. A. Farrall, "Effects of Simple Shadowing on
Variational Calculations," in Proceedings of the 1987 CRDEC Scientific
Conference on Obscuration and Aerosol Research, edited by E. H. Engquist
and K. A. Sistek (U.S. Army Chemical Research, Development and
Engineering Center, Aberdeen Proving Ground, MD, 1988), pp. 347-356.

8. B. J. Stoyanov and R. A. Farrell, "A Physical Approach to Developing All-
Frequency Trial Fields in Variational Wave-Scattering Calculations," in
revision.

9. D. E. Freund and R. A. Farrell, "Near Field Variational Principle:
Scattering from Spheres," in Proceedings of the 1988 CRDEC Scientiflc
Conference on Obscuration and Aerosol Research, edited by E. H. Engquist
and K. A. Sistek (U.S. Army Chemical Research, Development and
Engineering Center, Aberdeen Proving Ground, MD, 1989), pp. 217-234.

10. D. E. Freund and R. A. Farrell, "A Variational Principle for the Scattered
Wave," J. Acoust. Soc. Am. 87, 1847-1860 (1990).

11, D. E. Freund and R. A. Farrell, "Variational Scattering Calculations for a
Prolate Spheroid," in Program of the 121st ASA Meeting (Baltimore, 27
April-3 May, 1991), J. Acoust. Soc, Am. 89 (No. 4, Pt. 2), 1994 (1991).

12. P. M, Morse and H. Feshbach, Methods of Theoretical Physics, Part II,
McGraw-Hill, New York (1953).

13. D. S. Jones, "A Critique of the Variational Method in Scattering Problems,"
IRE Trans. Antennas Propagat. AP-4, 297-301 (1956).

14. M. R. Feinstein and R. A. Farrell, "Trial Functions in Variational
Approximations to Long-Wavelength Scattering," J. Opt. Soc. Am. 72, 223-
231(1982).

15. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Eds., Electromag-
netic and Acoustic Scattering by Simple Shapes (North-Holland,
Amsterdam, 1969).

16. G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross
Section Handbook (Plenum, Now York, 1970), Vols. 1 and 2.

17. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

18. L. M. Brekhovskikh, Waves in Layered Media (Academic Press, Now York,
2nd ed., 1980).

19. M. A. Leontovich, "On the Approximate Boundary Conditions for
Electromagnetic Fields on the Surface of Well Conducting Bodies," in
Investigations of Propagation of Radio Waves, edited by B. A. Vvedensky
(Academy of Sciences USSR, Moscow, 1948), Part II, pp. 5-20.

252



20. T. B. A. Senior, "Impedance Boundary Conditions for Imperfectly
Conducting Surfaces," Appl. Sci. Res., Sec. B, 8, 418-436 (1960).

21. R. D. Graglia and P. L. E. Uslenghi, "Surface Currents on Impedance
Bodies of levolution," IEEE Trans. Ant. and Prop. 86, 1313-1317 (1988).

22. K. M. Mitzner, "An Integral Equation Approach to Scattering from a Body
of Finite Conductivity," Radio Sci. 2, 1459-1470 (1967).

23. D..S. Wang, "Limits and Validity of the Impedance Boundary Conditions on
Penetrable Surfaces," IEEE Trans. Antennas Propag. AP-85, 453-457 (1987).

24. R. A. Depine, "Scattering of a Wave at a Periodic Boundary: Analytical
Expression for the Surface Impodance," J. Opt. Soc. Am. A 5, 507-510 (1988),

25. J. R. Wait, "Exact Surface Impedance for a Cylindrical Conductor,"
Electron. Lett. 15, 659-660 (1979).

26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York,
1981).

27. M, Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, App1. Math. Ser. No. 55
(National Bureau of Standards, Washington, DC, 1964).

28. B. J. Stoyanov, R. A. Farrell, and J. F. Bird, "Asymptotin Expansions of
Integrals of Two Bessel Functions," in Asymptotic and Computational
Analysis, edited by R. Wong (Marcel Dekker, Inc., New York, 1990), pp. 723.
740.

Y

_ý .
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ON USING DIFFERENTIAL
EQUATIONS

TO INVERT INTEGRAL EQUATIONS
DESCRIBING

ELECTROMAGNETIC SCATTERING
BY

HETEROGENEOUS BODIES

D. K. Cohoon
West Chester University

November 2, 1991

We are interested in predicting thc scattering of clectroma.gnetic radift-
tion by heterogeneouis acnros 1 particles. We clan representi th i(hlectrotiag-
netic fields induced within such 11 body as the solution of a coupled system
of integral equation relating the clectric and magnetic vectors of these fields
to the electric and umag ictic vectors of t, he stuntlating electromnagnetic fihld.
The idcas developed here can be a1pl)li d to bianisotropic structhiri, rbit for
simplicity we restrict our attention to the case of a nonmagnetic body. By
solving a differentiatl eqiuition, we, develop a new inverse integral equaitiotn
where only known fuitictions appelair judexr the( integrals.

1 INTRODUCTION
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When a scattering body has a general shape, there is no exact solution
to the boundary value problem associated with Maxwell's equations. The
problem is usually formulated in terms of integral equations where the field
quantities E and H being sought appear both under the integral and outside
the integral. The electric field integral equation has the form,

-grad( div(iwc. + all - iwe°-) G(rs'dv(s)

djv( o',( - ( i . •,)it) ),jrad( G(r, s ) )} da(s•) )

(W(

4- i,(.t' /(iweE + aH - iwcot)G(r, 9)dv(s)±

'111l (ji~wttfl + OfE - iwp.00)G(?,, .s)(v(s)) (!.I)

and the znagli.tic field integral equation for v, bia.isotropic IrIaterial is given
by

.1f -4 i4

(Inf di:(••#WIH. + OE -=pjH)

U/ /.,/I
- I-.,,.d1 f ((iwpH + /AM - ?i /t~ )..,), (,., -),( .)

- (/ ('~( E- (t.E)ii) xc (grrid(C'( r, )))da(s.)

iw)((j (1WIAR + OI- - iW/tleuil)G(r, s'()dv('9)+

, s5

(.11' U S II II E)G( (1.2) I1



where c, or, p, ax and pi are tensors and the Maxwell equations for time
"harmonic radiation with an exp(iwt) time dependence are given by

curl(,) =ipof - .1, (1.3)

and
curl(H) = iweokP + ., (1.4)

where J, = iwf,Ef + ,,9 - iwejf (1.5)

and
J" = iWA'# + AE - iW1.f (1.6)

To simplify the development we assunew that the integral equation that
we are solving has the form,

E-E' =ALE (1.7)

By working with this equation we have developed a resolvenit operator 'R.\
such that

E' =-A,•E (-.s)

This resolvent operator R,\ is given by
R .Z ,• R-

R.\E (p) = / \(p, q)9i(q)dh,(q) (1.9)

and 7•,\ is tZ,., sohltion of the ordinary (differcntial equation, in the iwd'epen-
dent varnb le A, given 1,y

(17z'\ (p q) = 7 ..,(p,- )R ,,, d ( ,) (1.1o))

with
RO(j, q) = (9(, .11)

where
LE(p) / g(p,q)E(q)dv(q) (1.12)

We note Hit, P\t o \ is known, wv(. C.II ptClict t.hic intc.cimti of radiu-
tionI wi*'lh differrlt, (,rieut-'t-ions ()f Ole se'at-te'rillg b•ody SiIII)Iv b~y ai1)lANying

transiornitions t.,) ,1 i 1111d lc lting E for (cmhi Of th.(' t-ra lSFiwl1('d \"'ainu's

(.I E . T!H;s w thd givcs its a kiid(Jf hIof ,b,t.0 1)y ht.weitn Ilhe, scat-teriii'
probhlli fo1r I vacuom: Is c t.terer too .1h ! ie)v ci' lplv'x St0A.ittt-'ilj p lo)Il)h'm.
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2 OPERATOR ITERATES

The main theorem of Calderon and Zygmund ([2]) shows that if we
define an operator L on the space LV(fl, C3 ) using the free space Green's
function G by the rule,

LF.(p) - F (q)g(p, q)dv(q), (2.1)

then the operator norm of L is finite. The theorem of Calderon and Zyg-
mund ([2]) tells us that the integral operators of electromagnetic scattering
transform fields producing a finite total power into other fields producing
a fir.1te total power. Since all t. norms on Rn are equivalent, we may defiue
the norm of L to be

I L In= sup {I Lf I: feL 2(11,C 0), andI f lax= 1} (2.2)

where
f(P) - (fl(P),f2(P), f3(P)) (2.3)

implies that

I f = fi(g) dv(,) (2.4)

It, is dcen'r, therefore, thiat if A is sufficiently small that the operator norm
of AL is simaller than 1. Thus., in everythinp." that follows in this section weshall asslarw that.

I AL In< 1 (2.5)

it is now easy to derive nri expression for /' -. E-A under this assumption.
Just using concepts associated with the summation of a geometric series
we find that

k-1 - k-A ,•>.-1LT' (2.6)L F,,~~\ = -A ItA Lk

We exprjess thu right sidl of equv ,tion (2.6) qs aii integral operator by in-
troditci ug t he sought. after solution finder or resolvent kernel 7%'(\(p, q) via
the reltitionlshiIp

-Aj R\(p, q). Ei(q)dv(q)= -A E (A,- 1Lkfi) (2.7)
2=6
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Combining (2.6) and (2.7) and the basic definition (2.1) of L in terms of
g(p, q) imply that if we introduce the functions g(k)(p, q) by the relations,

00

1Z(p. q) = 9(p, 0) + E (Akg•kf)(p, q)) (2.8)

k= 1

so that it would then follow that

Lk = i P(')(pq)f'(q)dv(q) (2.9)

and since

=k f jG(P, u) 9(j')(w, q)fr(q)dv(q)) dv'(u) (2. 10)

and since an interchenge of the order of integration in (2.10) implies that
in view of (2.9) and the relationship,

n -+' = L(Lk'9i) = Lk(L-21) (2.11)

that th at ('+ ')(p, q) 9/ (p, w )9("I (w , q)dv(u,)

9/ (')(p, w)9(w, q)dv(wv) (2.12)

it will follow upon substitution of (2.12) into (2.8) that

R.(p(, q) = pgP, q) + 2Ak (j (p,uw)QMk)(u,,q)dv(w)) (2.13)

We now rcsubstitutc the original representation of 7?x given by (2.8) into
(2.12) making use of the fact that

Q(l)(p,q) = Q(p,q)

to deduice that since (2.8) saiys that
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ARA(p, q) E ~A*0(k)(pI q)

A q) + E (+)p )(2.14)

and cincc

~'k g~+1( q) = ( g(p, W.)Q(k)(W,-9)dv(w))1

the relation,

RA(p, 9)(p, q) + A (9 (p, w)1Z,~(w, q)dav(w) ) (2.16)
is valid for A with it. sufficiently small absolute v'alue, Our next objective is
io obta~a an expression for

Q(A, ) A A(2.17)

and take the linrit as approaches A.
We begin by nioticing that in view of equations (2.12) (2.14), and (2.16),

we obtain the relation,

A, f l?(P, tv)Q(t, q)dv(w) - f J5C(p, zv)1?ý(t;, q)dv-(w)

j ~ (t'c+, w)Q(;w, 11)) ) -vw (.8

hIn workinig with eqpuition (2,18.) we will inuke use of the standard ideýntity
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and the fact that (2.12) implies that

j=O k=O
z0 ( ±( 3~-gu(p, )(+'(q))) w) 2.0

However, in order to proceed we need the following Lemma.

Lemma 2.1 If 9 is a dyadic Calderon-Zygmund kernel (Coalderon and Zyg.
mund 12)]) on the open set 0 of R" and if0(k) is defined by equation (2,12).
then if j is a nonnegative inteqer,

f Q (p, v))( 1  (w s q)dv(q)

fo g(W)l(p, t,,)gci-k+1)(w, q)dv(q) (2.21)

for all integers k between 0 and j.

Proof of Lemma 2.1. The proof of the Lemma will proceed by induction
on j. If j = 0, then k = 0 and equation (2.21) is a tautology. Thus, we
let "P(j + 1) be the sentence that says that equation (2.21) is valid for the
nonnegative integer j. We have just obscrw'd that P(1) is true, and we
proceed to prove that 72-(n) implies that P(n + 1) is true. We not. that
P(n) is always true if k = 0 or if k = j, and we consequently assume that
0 < k < j and proceed by induction on j. Thi definition of gU+ )(wo)q
and the inductive hypothesis imply thct

9 Q(p, t,)C9(+')(w, q)dv(w) =

of 9(p, 1) / (G(w, ur)Q(j)(u, q)) d:(u.4i00(h)10

j g(p, w). / •gki)+i)e, it) L)(k-i) t (uq)dri'(q)udv("i) (2.22)

Interchanging the order of integration inl equtinon (2,22) imiplics that
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j (p, w)VU(')(w, q)dv(w)
(j (k-)+1~,,U)) 9(iAh+1) u, q)dv(u)

= j Q(k+l)(p, u)Q(i-h+1)(u, q)dv(u) (2.23)

and this completes the proof of Lemma 2.1.
We will now use Lemma 2.1, equation (2.21), to rewrite equation (2.20)

in the form

Y==
j=O \kmO

0( Ak,-k /(0+l)(p, w)0('k+I)(w, q)dz(w) (2.24)

We will now prove the validity of another Lemma. This Lemma will be more
abstract and will treat properties of sequences of, possibly, noncommuting
linear transformations {A,, A2 , A3 ,.' .} and {Bl, B2 , B3 ,. .} where the A*
map a Banach space Y onto a Banach space Z, and the By map a Banach
space X onto the Bana.h space Y, and the conditions under which one may
define the product of a series of the form,

00A= 1 (akAk+1)
k =O

and a series of the form
00

SO=

While the Lemma which follows may appear to be formally obvious, a proof
is needed because of the interchange of infinite processes.

The Lernma is the following.

Lemma 2.2 Let {A 1 , A2 , A 3 , .. ') be a sequence of bounded linear trans.
formation,, of the Banach space Y with norm, I lr into the Banach ipace
Z with norm, I Iz. Let {B,, B2 , B3 ,- "} be a sequence of bounded linear
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transformationa of the Banach apace X with norm, I Ix, into the Banach
space Y auch that if

I Aj I(yz)= sup {I Aj Iz: f E Y and I f Iy= 1)
and

I Bk I(xy)= up {I Bkf IY: f E X and I f Ix= 1}

then there are positive real constants CA, Ca, RA, and RB with the property
that

I A+j I(Yz) < CARA

and

I B+I I(XV) < CBRB
for

{j,k} C {1,2,3,..,.}

If A and a are such that ARA < 1 and 3 tRB < 1, then

00 (j (AkAj-'Ak+jBj+I•k) (2,25)
,j=O k=a/

and either aide of thi, equation represents a bounded linear transformation
of the Banach opace X into the Banach space Z.

Proof of Lem'rta 2•2. Since Bj+,-k maps X into Y and Ak+1 maps Y
into Z, it is clear that Ak+,Bj+i-k transforms elements of X linearly and
continuously into Z. Also, the hypothesis of Lemma 2.2 guarantee that both
sides of equation (2.25) define uniformly series of bounded linear op~erators
acting on the Banach space X and that, consequently, any rearrangement
of terms leaves the sum unchanged. Since

Akhg = Ak•,-h

if k + e j, the Letinni follows by induction on the products of the number
of terms in finite partial sums approximating the left side of (2,25).

We now ulpply Leinim. 2.2 to prove the following.
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Lemma 2.3 If I.A is defined for complex numbers A by equation (2.8) or
(2,.14), then the relationship (2.12) represents 9(j+2) and

J 1(p, w)1x(w, q)dz(w) =

E (A •-¢J'(p, q))(.6
j=0 k=fO

Proof of Lemma 2.3, By equation (2,8) we see that

A,(p,, W) = E (A'9('+')(p, tv)) (2.27)
kwo

Thus, by Lemma 2.2 it follows that

IZA7(p, wv)7ZI(w, q)dv(wo)

EI E ( A (kQU-k±)(p,)))) 9 (3 (i oii, q)) dii(t) (228

Now using the relation (2,22) and the definition, equation (2,12), of g(j+l)(p, q)
we seC th.t

0'(+2)(1),q) lo f .4(, +,,(p,tV)g(j-k+ ') (,t q) du (w) (2,29)

Thus, Lenmma 2.3 ;and ,qi mitioii (2.26) thein follows as a. result of substituting

cquajtion (2.29) into equation (2.28). This completes the proof of Lernma
2.3,

We now co021)lct(' the proof of tH.- final Lemma which will give us aln
e!xp~ression for R.,(p, q) - Zij(p. q). EqLuation (2,16) then tells ms that

Ri(p, q) - 1 (p, q) =

.A./ g' j, ,' )) , (',q)du'(t,') - 9 / Q(p, ,,)R (w, q)d,,(,,) (2,30)
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Substitution of the power series representation, equation (218), of ZA(w, q)
into (2,30), we can obtain the relationship,

IZA, q) - RI(P, q)=

(A+0+)P q) _ ,j1+ )) _
j =0

A j Q~p, w (A\iQ(j+1)(tv, q))) z()

0 fP gp u) ((+ 1)(IV, q))dv(w) (2.31)

Substituting (2.19) into equation (2.31) gives us the following lemma

Lemma 2.4 . If I1A(p, q) is, given by equation (2,8), where 9(')(p, q) is~
define~d by (R2,12), Mhen

R,%(p Iq) - 1?Z(p..q)

These Lemmas enable one, to prove the following theorem.

Theorem 2.1 If 7R?(p,q) is de-fined by (2.7) and (2.8), and C(p,q) is• a
Caldrron Zygrnund Kerrvdl (Caldevon and Zyqgrnnnd 12]), then

R.A(p, q) -- R.(p, q) =

(A - A) 1 tv'(t" w) R(u(w, q)d v(w) (2.33)

tind
Sq) =J T?,(p, w)Rx.(w, q)du(w) (2.34)

whcre
lo(p,q) = 9(p, q) (2.35)
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Proof of Theorem 2. 1. Equation (2,33) follows by substituting equation
(2,26) into (2.31). Equation (2,34) follows by dividing both sides of (2.33)
by A - A and taking the limit as ý approaches A. Equation (2.35) follows
from equation (2.16).

In solving the initial value problem suggested by this theorem we note
that the Cauchy integral theorem tells us that an integral of RA over a
curve or a path of A values in the complex plane is independent of path if
one path can be deformed into another without crossing a pole of IZA.
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1 Introduction

Prolate spheroids are cigars and footbads and oblate spheroids are falling raindrops and
doorknobs. A spheroid is an ellipse rotated about an axis. If it is rotated about a major
axis it is a prolate spheroid, If it is rotated about a minor axis, it is an oblate spheroid.
In the halls of Congress a certain young representative had his desk in P. most undesirable
location; for some reason, however, he was able to rise instantly and give brilliant rebuttals
of the arguments of his opposition It turned out that the roof was a spheroid and his desk
was at one of the focal points and the desk of the opposition was at the other focal point.
He could hear the whispered planning of the oppositon long before they got up to apeak,
Unlike the wedding guest described 2000 years ago, he refused to move up to a place of
greater honor, and, his secret remaining with himself, others were content to allow him to
remain in his more humble post.
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Spheroid scattering is important because it provides challenges for general purpose codes,
and because one is interested in the propagation of electromagnetic information through
clouds of spheroids, such as falling raindrops. The computer codes developed mny alsc have
a bearing on the design of liquid crystal devices, such as liquid crystal television sets and
computer monitors which would, as they use natural room light, be far safer for the users,
often young girls, than cathode ray tube (CRT) devices currently in use. Young children,
in poor urban settings, often spend hours huddled close to television sets. If they are going
to do this anyway, let us, for the sake of the children, make television screens safer with a
liquid crystal design. The ability to remember sight together with sound, may provide a
way to teach and make literate a larger segment of human society all over the world; we
have many serious problems to solve, and no one knows from where the genius to create a
solution may come.

The Helmholtz equation can be solved in spheroidal coordinates, and using this solution,
we can obtain solutions of the Faraday and Ampere Maxwell equations. Note that if %P is a
solution of the Helmholtz equation, then if F'is the radial vector, then

A = curl( '%P)( 0.1)

and
= (1/k)curl() (1.2)

can be used to obtain a solution of Maxwell's equations. We proceed to define these com-
putat!ons in spheroidal coordinates,

2 Spheroidal Coordinates

Consider an ellipse with foci at (0, -d/2) and (0, d/2) on the z axis and if

r2 = x 2 + y2 (2,1)

and (r, z) is a point on the generating curve for the spheroid, then if we define for r, being
the distance between (r, z) and (0, -d/2) and if r2 is the distance between (0, d/2) and (r, z),
iilnd if we then deffi,', by the rule,

S= (r, + r2)/(2c) (2.2)

and define q by the relation,
q = (r, - r2)/(2 c) (2.3)

where c is a constant, we have a set of coordinates for describing points within a spheroid.
We shall actually use a slightly different set of coordinates that are qualitatively the same.
We can define points on the surface of the spheroid as all those points (e, tj, 0) for which C
is a constant, which since an ellipse is the locus of points such that the sum of the distan1ces
from fixed foci is a constant is embodied in the definition of ý given by equation, (2.2).
The other coordinate surface defined by setting r equal to a constant is a hyperbola, as
this snym qirnply that the diffcrcncu• f the distances between two foci is a constant. The
third coordinate surface defined by setting € equal to a constant is simply a plane passing
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through the axis of rotation. We give an alternative definition of the spheroidal coordinates
and show that this definition is compatible with the more intuitive definitions of equations
(2.2) and (2.3) The relations between spheroidal and Cartesian coordinates are given by

=d [(= - q')(W2 + 1)] 1/2 (o(O) (2.4)
2

and 1n = ý [(1 - ,q2)(f2 + 1)I1/2ain(O) 
(2.6)

and dZ = ýTl 
(2.6)

Going back to the equation for an oblate spheroid we have that

(x2 + Y2)/A2 + z'/B 2 =

(d2/4)(1 - ,q)(ý2+ 1) +(d2/4),22$2
A2  B 2

- (2.7)4 L(d/2)2 (d/ 2)J 2 27

if we simply let A and B be defined by

d A + 1(2.8)

andB = Il (2,d)

For the oblate spheroid, we have
A>DB (2.10)

and the foci of the ellipse may be thought to be on the z axis located at

X = C = V'A2 -1-D2 = d/2 (2.11)

and the sum of the distances from a fixed point on the surface to the two foci is 2A which
happens to be

2A = d •/• i= ri+r 2  (2.12)

If we compare equation (2.12) with the earlier equation (2.2) we can see easily thc connection
between ý and f and that setting either one of these equal to a constant defines a surface of
a spheroid.

We now try to develop the unit vectors in the direction of the normals to tlie coordi-
nate surfaces ý = constant or t7 = cunstant. Note that if we had a general coordinate
transformation relationship

Y = 1(u, W) (2.13)
Sz( ,U v, w) /
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and the unit vector in the direction of the normal to the coordinate surface

u = constant (2.14)

is given by
dil 11d.91 (2.15)• =Tdu ( du

where
Affr. + v, + zir, (2.16)

If we imagine an arc in three dimen3ional space and try to describe it in Cartesian and
spheroidal coordinate. Assume that the arc A(t) is defined as an orbit defined by a contin.
uous parameter t. Let a(t 2) minus a(ti) denote the arc length between A(t2) and A(t1 ) on
this curve so that d. 2 2

_d)2 + + dx (2217)

In order to get values of parameters hf, h., and ho so that we may express the Laplacian
and curl operations in spheroidal cuordinates we observe that equation (2.4) implies that

a= d ( 17)]1/l [(42 + )] -1/2 COS(O)
From equation (2.5) we see that

From equation (2.6) we see thatN 2

L% d i (2.20)

Thus, using the unit vector equation (2.15) and equations (2.18) and (2.19) and (2.20) we
see that the unit vector g' is given by

f [e2 T -jco-(o)x +

-s±.in(O)' + (2.21)

Thus, we see that the length factors In an analogous manner we write down the unit vector
g by the rule

= 4.a.~2 -ti~~tcos(OX +

-~4 sin(O)e', + C' (2.22)t2 V7
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We observe from eq, ations (2.4), (2.5), and (2.6 ) that

O = - [(1 -1')(ý2 + 1)11/2 (2.23)

"- d I(1-7)(, +1))CO() (2.24)

and O
a-n = 0 

(2.25)

Finally, again making use of the equation (2.15) and equations (2.23) and (2.24) and (2.25
) we see that the unit vector e' is given by

"= - .in(). + cos(#)O'v (2.26)

It is clear from the definition, equation (2.15) used in creating equations (2.21), (2.22), and
(2.23) that there are scalar functions hf, h,, and hO of 4 and q7 that satisfy

O:•, Oyj Oz (227
h1 = L eC + O i + -eg, (2.27)

andrO , Oy. az -

,hf e + a + e. (2.29)

We notice that these vectors i4, 4., C'# are pairwiie orthogonal in the sense that

. (2.30)

We can use these relationships to represent the vector A defined by equation (2.16) in terms
of C', e", and ,eO. We see that

R = (R.4) + (R.4)4 + (R.4)4 (2.31)

where x Ox Y Oey z az
=e) -- .- + .- -- +-- (2.32)

h4 0( ht 04 h( ac'

(I .) = "O + h--. " + z O- (2.33)

and adz ex Y•C z bz

(R co) h-- " + -. + -" (2.34)

First, substituting equations (2.18), (2.19), (2.20), (2.4). (2.5), and (2.6) into equation (2.32)
we obtain

(2 C2) + 4 +1 (2.35)
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Next, determining that

Ox + 1)] /(77) [(1 - cos() (2.36)

and that
0-' = , (-d1 )sin() (2.37)

Equations (2.36), (2.37), and (2.4), (2.5), and (2.8) tell us that
d/1-,7=

(A' ,) = - 42 /1+ t (2.38)

For a general coordinate transformation from an (x,y,z) frame to a (u,v,w) frame we have
the relationship,

(,z )(v2 +d \,2([ Xo 2 +(!k2 + \L21 I2 ++ (L ,,,),

[\Y)+ )2 + + k ) + Z)I] Y(L
D: 8: D, Dv , 0: 8:1 du dv

Ou Dv O u + v Ou ay L dt dt~
D: 8: DO, Ov 0:0: u dw2 Lx -,•. , Ozz +- OyO +- O u, -

••U •w ÷U Ow 9U Owj cit ' -r

2 ( 8 + y LI + 8 dv ,,L (2.39)
DOv Ow Ov Ow Ov (2.39) d

Making use of the orthogonality of the C, Y1, and • coordinate system we see that with

(u,,v,w) = (t,?1, 0) (2.40)

that all of the terms in equation (2.39) with a factor of 2 vanish, and that

d~i 2 dz2  \ +hl (L~f+h (2.41),(,2(+£) +,;) = __) • • z'.

Thus, for oblate spheroidal coordinates we obtain upor, making use of equation (2.41) the
following expressions for h(, h,,, and ho. From this equation and equations (2.18), (2.19),
and (2.20) we see that

"h( = V-d + (2.42)
-2 Vý2  + I

Next observe that
- h. iv I + r
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Finally equations (2.23 ), (2.24), and (2.25) imply that

d ý-
h# = (1 92)(02+1) (2.44)

In order to carry out vector calculus in oblate spheroidal coordinates we need the following
relations. Equations (2.42), (2.43), and (2.44) imply that

heh,jhI =+ q2) (2.45)

Also, equations (2.42), (2.43), and (2.44) imply that

h.h " (ý2+ 1) (2.46)

The other two similar relations are

ho 2 (C2 + 1)(1- )) (2.47)

en d h t h # _ (
d . 2 _1 -q2) (2.48)

The above relations are needed to define the Helmholtz equation in oblate spheroidal coor-
dinates. In order to define the curl operation in oblate spheroidal coordinates we need the
product pairs as well Equations (2.42) and (2.43 ) imply that

h( = - Vd2 42+)q2 (2.49)

Equations (2.42) and (2.44) imply that

hT -h# = j(Q + ,2 )(1- ,2 ) (2.50)

Finally, equations (2.43) and (2.44) imply that

h" = h(# 4 + ,,)(ý+ ) (2.51)

The curl operator in a general orthogonal coordinate system of orthogonal u, v, and w
coordinates is given by

curl(t) --

' -[ hE) -2-(hE,)l eA +

hj,hw [Ov~iWW aw J
1 CŽ-(hjEu) - -(h.E.) e', +
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- ['(h,1 E,) - (h.E.)] (2.52)

Equation (2.52) may be derived from combining the representation of Cartesian frame unit
vectors in terms of i., 9., and 4 and using the gradient equation,

grad(t) = 8e4 +---• + --- T, (2.53)h, u h, Ov h., Ow

since (2.53) can used to express the curl of a vector field as the gradient cross this vector
field. The divergence is given by

div =() 1 ){-(- - ) (hh- E)

(;)(hthvh E V) + (-)(h,,hM'- Z)} (2.54)

It is easy to show that

ctrl(curl(A) = grad(div(..) - A. (2.55)
where{ '

1 r 8' fhvh~8',,where AT = -I -I -±IýhwO +huhi,hu Ou h. Ot*

) (huh-wTP\ (ht8TP l (2.56)
Tv h, Dv + w h. Ow

The relationship (2.55) implies that

A(curl(Jt)) = - curt(curl(curl(.g))) = curl(A(ff)) (2.57)

since
curl(grad(T)) = 6 (2.58)

The Mie solution is based on applying the curl three times in succession to the vector RT
where g d + 2 z

R = grad( ±2 -) = xe' + e,, + z,. (2.59)

which means that since for any vector field P and any scalar function TP it is true that

curl(,,') = 'I'cur,(P) + grad(P) x (2.60)

that if A is defined by (2.59) that

curl(Tfi) = grad(T) x A (2.01)

and since We also have the relationship,

A('PA) = ,{A(s)} A + 2.grad(T) (2.62)
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Substituting equation (2.82) in'ýe equation (2.57) we see that in case T satisfies

AT + k2  = 0 (2.63)

that, since both the curl of a gradient and the divergence of a curl vanish,

curl(eurl(curlI(Q ))) = curl(-AP) = + k2curl(&A) (2.64)

Equation (2.64) is the basis of the Asano and Yarnamoto solution ([1]) as well as the classical
Mie solution for isotropic materials. For example, for an isotropic material we could let the
electric vector be given by E -- a.A• + b.A•, (2.65)

where1 wA? .curt(A) 
(2.66)

and where = 1 (2.67)
T2 curl(curl(R'))

with T being a solution of the scalar Helmholtz equation (2.63). Then if the magnetic vector
Sis defined by

17 = - 2-- (k.a.2i• +I k.b.A))(2 .68)

then the pair of vector valued functions (2.65) and (2.68) are solutions of both the Faraday
and Ampere Maxwell equations for isotropic spheroids.

3 Vector Calculus for Oblate Spheroids

The Helmholtz operator in a general orthogonal C, q, and 0 coordinate system may be
expressed in the form is

AT + k(2hq',

(I (hh.&O'P)

h~roOi he & O .

O (hhOP)}" + k2' (3.1)

and using the values of h(, h,,, and h# for an oblate spheroidal coordinate system we have
upon making the substitutions of equations (2.46), (2.48), (2.47), and (2.51) into equation
(3.1) we deduce that
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0 +q2 +2 T

+ 1)(I - T7) 84) J
+ k2•((± + n9)q = 0 (3.2)

We now seek solutions of equation (3.2) of the form

', = R()S(7()ewXp(im,,) (3.3)

and substitute equation (3.3) into equation (3.2) and then divide all terms of this equation
by the function T defined by equation (3.3) after making use of the relationship

42 + q2

W + 1)(1-r/') -
1 1 (3.4)

I-iq2 C2+1

and making the subsitution
-' = 2cL/4 (3.5)

we obtain the relation,

- --2 + c2 =

-1-

C2 + 1. 2 -(m,) (3.6)

From equation (3.6) we obtain a kind of Rayleigh Ritz functional for the value of A(m,n).
Equation (3.6) tells us that

A(m,n,) ={ [17 -12) (d.,) 2 + s 2 {(_C212) + 1 Mn2}]di I S2d} (3.7)

We note that when c is equal to zero, we are dealing with a sphere and that the angular
functions are the associated Legendre functions P,,(r/) so it makes sense that we want S to
behave like the function P,,m(r) when c is zero. We note that either n - m is even or odd,
and we know the initial conditions exactly in each case, We use partial derivative notation
for functions G(., q/) and note that

D,G(c,O) = LIM 80 (3.8)
17 -40 871?
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and define the intial conditions for the second order ordinary differential equation satisfied

by the functions S(c, rI). We find that if n - m is an even integer

S(~,)(, 0•o) - {()-,m--/,,(n +,,!} / {,-((n-Z m), (n + m),} (3.)

and
D2S(n,,)(c,0) = 0 (3.10)

and when n - m is an odd number that

S,(,,)(C,O) - 0 (3.11)

and that

D2S(m,n)(C,,0) = {(-,),n-1)-,(n + m + 1),}/{2-("-', -1)! (" +2+ 1),}

(3.12)
With these initial conditions we have completely specified S and its partial derivative and
mixed partial derivative au a function of t/, c, and A and we also know that

A(0) = n(n + 1) (3.13)

This gives us an initial value problem and an ordinary differential equation

A'(c) = F(c, A) (3.14)

where the function F is determined by differentiating both sides of equation (3.7) with
respect to c and collecting terms involving A'(c), and then dividing all terms by the coefficient
of A'(c) to get the first order ordinary differential equation (3.14). By the uniqueness of the
Cauchy problem, different initial values cannot lead to the same eigenvalue at

c = k.- (3.15)2

This is effective if c is real, but if k is complex, then we think of c as being a function of a
paramter * defined by

c(s) = a 2-k (3,16)

and with the same initial condition develop an ordinary differential equation of the form,

A'(s) = G(s,A) (3.17)

Once these eigenfunctions are known, the steps for getting an exact solution for N layer
isotropic spheroids is clear. The vector valued functions At? described in the previous section
are proportional to the curl of RI,, where

S= Ri,4(m•)s(,,,?,)exP,(irJ) {~

2 i -+0 (3.182
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All three components appear in the M vector represented in spheroidal coordinates and this
is given by

curl(A'P) -- % {im, (Q + 1)(+ + +

let (+ -1))( (t+ +,2 )

+ 2 .(t %Po){ (, +1)i?2 • g - (3.19)

This is k . Al and by expressing .& in terms of the curl of R?, we obtain the vector fields,
a combination of which, can be used to represent the electric and magnetic vectors inside
and outside the spheroid. The scattering problem is then solved by matching the q and the
4 components of the electric and magnetic vectors across the boundaries of the spheroidal
scatterer.

4 Prolate Spheroid Scattering - an Exact Solution

Here we consider a tensor material whose regions of continuity of tensorial electric per-
mittivity and magnetic permeability, are delimited by confocal spheroids. We assume that
the foci are on the z-axis at (0, 0, d/2) and (0, 0, -d/2). We assume that the N confocal
spheroids are delined by equations of the form,

ý =( 6(4.1)

where the relationship between Cartesian and Prolate spheroidal coordinates are given by
equations d 1)]/, o~(¢,)(4.2)

a Y [(1 _ 12)( , _ 1)11/2 ,sin(O) (4.3)

and by equation (2.6) which is the same in oblate and prolate coordinates, which means
that the equation of the ith spheroid (4.1) is, in Cartesian coordinates given by

122 Y 2 - Z2(4.4)
(d2/4)(ý2-1) + (d:) 2 /4 --

We use the curl operator in a coordinate system with the same angle coordinate 04 of spherical
coordinates that runs from 0 to 360 degrees so that in spherical, spheroidal, cylindrical, or
toroidal coordinates the Faraday Maxwell equation is defined by

curl(f) 1 - [- (h#E#) - imhnEi,] 4 +

280



r~• a• (hoEO)l 47 +

1 [imh,E,)_ __8 ]

a-~ -h,, '(h4Ee)] e-0

- - i - iwM4Hg4 (4.5)

We can solve equation (4.5) for components of the magnetic vector; this is simply a statement
of Faraday's law which says that if one integrates the tangential component of the electric
vector around the boundary of a surface, the value is equal to the negative time derivative
of the normal component of the magnetic flux A. if integrated over the surface.

Ampere's law states that if we integrate the tangential component of the magnetic vec-
tor around the boundary of a surface that this is equal to the normal component of the
current, which includes displacement current or the time derivative of the vector 15 ) as
well as conduction current Y, integrated over the surface. The Ampere Maxwell equation
is, therefore, in this coordinate system, given by

curl(Il) - - 1 (h#H) - imh9 7H] ?t +

1[imht~t- (hH)]i

Sho at
1 [ (hH) -- (h(Hj) i-O

(iwef + a()E(' + (iwe" + a")Z"8n + (iwe, + ao)ZEi4 (4.6)

Solving equation (4,5) for I11 we see that

-ft L( [ý (hEo) - imhE,] (4.7)

Equating the q components of both sides of the Ampere Maxwell equation (4.6) and sub-
stituting equation (4.7) into this equation we deduce that

[(iWe1n + an,) + -I- [:mhe {-L (5,1-) imnh,}]] E,,

K- imh( {I L (5--) I- (hoE#)} ) (hoHO)] (4.8)

We can introduce functions A. and B, such that equation (4.8) may be rewritten as

E = = An -(hEo) - B.-0(hoHo) (4.9)

Similarly, it is clear that by equating the q components of both sides of (4.5) and solving
the Ampere Maxwel equation (4.6) for E4 we see that we can find functions F, and G,, such
thatRn = F70(hoHo) 

- (h#E,) (4.10)
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where if we define k(p,, ef) by the rule,

k(pqe)' = (w2 .pqe - iwp.qcr) (4.11)

then 7 im/h, (4.12)

M2 + A(jn e0 2 -h(

We now solve equation (4.6) for Ef obtaining the relationship

E(= 1 [-- ] A ho4 - imhiH,]

We can, thus, express E4 in terms of E0 and Ho and can similarly express Hf. If we
make all of these substitutions into the 4'o components of both sides of the Faraday and
Ampere Maxwell equations we get two coupled partial differential equations in the E0 and
Ho variables.

Thus, we have a coupled system of elliptic equations of second order in the angular
components of the electric and magnetic vectors, with all other components of the electric
and magnetic vectors being simply expressed in terms of these components.
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OPTICAL AND ABSORPTION

EFFICIENCIES OF, AND POWER DENSITY

DISTRIBUTIONS WITHIN N LAYER

BIANISOTROPIC SPHERES

SUBJECTED TO ELECTROMAGNETIC

WAVES
R. H. Frlckel

b. "K. Cohoon

March 5, 1992

We consider the problem of determining the optical and absorption efficiency of a

class of N layer full tensor elctiroiiagnitically bianisotropic sphercs to it plan(, polarized

(,lvetrofmgnletic radiation. Considcrahle flexibility ([47]) has been demoastrated with two

layer structures in relating their prolperties inl sitch a way thut these( partic'lhs hlve an

extremely high op1 ticfal tlld ablsorption (e'ficiency. Groundwork has been laid for the design

of materials with differing elevtromagnietic properties in different directions which have

,xtremely high .fficllinies (of absorption.

By vareffll anatlysis it woid1 )l, 1,possiblh to do the saimie foit. 1wtetviogeiieols radialtion

SOTI('(Brt,,i [81]. Cht'vaiuhier [101 [18], Chylek [20] SchAlb 142], Tsui [46], Yelh [57]) when

thes' spheCrs arc plitced iin til ambieiit ilfdi(hili with iilt,,,rild pr1 ,er)ti(,5s ,m1( that if Q is

1n11 opli ,St ill the 514i1ivtit l1I('(hlliml 11id

aiI( E x 11 )rl' 0,
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tthen E and H are both zero in fi

In this paper we describe the exact solution to the problem of describing the interac-

tion of electromagnetic radiation with an N laycr structure whose regions of continuity of

tensorial electromagnetic properties are separated by concentric spheres. We assume that

each of the layers are bianisotropic. For the most general case, the radial functions are

solutions of a system of equations, and we get a four parameter family for each index in

each layer, However, we also get an interesting, but easily computerizable example.

Bianisotropic materials have used (Ferencz [25], Ganmo [26], Hebenstreit [29], Shiozawa,

[44] and Yeh [56]) in modeling a medium moving through an electromagnetic field. We

consider also the possibility of an electromagnetic field whose spatial distribution would

suggest a complex source that would include an off center laser beam interac.tion with a

droplet or a radar beam sweeping across a stationary structure, By considering a layered

spherically symmetric structure whose core may be metallic and with outer layers having

complex material properties or containing sources of radiation, we may be able to predict

the level of the hazard experienced by an individual with a metalic bone replacement or

clamp who is placed in such a field.

The source of internal power density distribution for a b1 iamllsotropi' structure eXl)osed

to external sources is distinct from anisotropic materials, since ternis involving the piraoci,t

of the electric vector E and the nmagnetic vector H uppear ill the iit(I-iil pow(er dleinsity

distribiltion. Using the concepts contained il this lalw,., a. soliution of anl cie'rgy (,q'atioi

With a tenlsor (o'lduhtivity cval be obtaii(l Iby agl exact. fotinrila. l vIwIh the' ch-ctroinl LgIctic

l)opjWrtii'Ns do not ('hiIlge duriiing thde (xpIsurv pr(oces(s. Using the (leriv((d (lergy d(ensity

distribution as a somirce teriii, it mor' general lnolivaI hieit.t ((,Iatitn, taking into ecountu

radiative condcwtivity conil')tS ('1l Le (h(,'iVed. Sevr,'al atd,,,irs (Barton 18], Chylhk [22],

Schauld [42]) simtply assunie that ti,, power deilsily d,')l('ld, oil tdi squa(re, of the, Ih.ithi

of the hlectric ve•toi' tiliecs thOe oilihctivity. Ill it 1liiI iso•t.r pic 1m t 1hi.1, hmowver, tierte i";

a1 pow(l. d!eniityV (olt Vibil~t-ioi fromi tl1(' 'oii1liliug of 0t4, .11 1U h 11gllicUl(ti(' \('Ct-ol (5(4'

c(uIatioll (,5.2.6).
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1 A Mie Like Solution for Bianisotropic Sphere Scat-

tering

1.1 Introduction

Although it is possible to develop an integral equation formulation of the problem

of describing the scattering of electromagnetic radiation by a bounded three dimensional

body (Jones [33], pp 528-529), the only bounded body for which a truly exact solution has

been obtained to the problem for describing its response to electromagnetic radiation have

been those with spherical symmetry. It is possible to give a representation (Jones [33], pp

490 to 495) of the fundamental Green's tensor Y satisfying

cur'l(curl(f)) - Of = 76 (1.1.1)

in terms of vector spherical harmonics and to use these to develop a concise derivation of

the solution of the problem of describing scattering by a sphere (Jones [33] pp 496-526).

Some earlier work on anisotropic sphere scattering ([28] [32]), [49], [53]) have extended the

classical result of Mie ([34] 1908) which is believed to have been first obtained by Clehsch

([231 1863). We describe, here, an exact Mie like solution that is applicable to a class of

bianisotropic spheres.

1.2 Problem Definition

We assitine that f and "I are tensors defining the permeability and permittivity that

are fuictions of the spatial variables and the freiquvncy w of the radiation. Here Maxwell's

eqlt ;dioiis have the forini

ucl,'(!2) = -, t - /(1.21)
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and

curl(H) = iw + RE' + 7 fl (1.2.2)

In the ambient medium we assume that the tensors N and/3 are the zero tensor 0. In this

paper the energy balance is described which enables us to validate a computer code for

describing the interaction of radiation with an N layer bianisotropic sphere where t' layers

may be separated by impedance sheets. The inner core may be penetrable or perfectly

conducting.

1.3 Spherical Harmonics and Orthogonality Relations

The basic idea of the code is that the induced and scattered electric and magnetic

vectors can be expressed in terms of

. 7(e:os(O)).. 1

g~n~) d m(0(9j,eo + im sin(9M) - . exp(imck), (1.3.2)

and

C•.-) = P"V(co(O))cXp(imo);, (1.3.3)

where e,., C, and e',ý are the unit vectors 1)erpendicular, respectively, to the r = 0, 0 = 0.

and - 0, coordinate planes, and where P,(cos(8)) is the ordinary Legendre function

defined by Rodrigues's formula

P() _n !z- 1P (1.3.4)

The associated Legendre functions P', are given by

PT(Z)'(-p) (1.3.5)

It is obvious that even without integrating over a sphere that the (lot product of either

of A(,,,,,,) or ](,,,,) with C(,,t,,) is zero. The orthogonality of the functions p(i•tL) and
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exp(ifii¢) on the unit circle for in $ ih show that if as in ([11)) we define the inner product

of two vector valued functions 0(8, 0) and 0(0, €) defined on the unit sphere by,

< j , > = 2r 0o [(o,0). 1(0,k)*sin(o)dod4 (1.3.6)

with two different values of ?n are orthogonal. If we take the dot product of two distinct

members of the collection

s= {A(r,,,),B' ,,(m,n),, : -nZ and nE {In n , m +1,'"}}, (1-3.7)

with the same values of in and make use of (Q2], p 333) the negative index relationship

P&"(Z) r(-I ,+ 1) 2 (1.3.8)

we find that any two members with different values of n are orthogonal with respect to

the inner product defined by equation (1.3.6), For example, to see that

< 1 Bn,,,B(,fl,r.) > = 0 (1.3.9)

for all n and r we note that this dot product reduces to
i on21r [P,'(cos(O))P,"(cos(O))) dO = im(21r) d

tm(20r) T dof {P,(x)PT (x)} dx (1.3.10)

TIhe details of the remaining orthogonality relations are found in (Q11]) or can be derived

from nproperties of the Lepndre functions described in Jones ([33]).

Plane waves in rive sptace can be rei)resented using the functions described above by

carrying out the expansion(Bell, [10] page 51 and Jones [33], page 490, equation 94)

cxp(-iko,'cos(6)) = , aP,-(cos(9))j,(kor) (1.3.11)

n0O

where the expansion coefficients a,, are given by (see Jones [33], page 490)

a, = (-i)"(2n --4. 1). (1,3.12)

These coefficients are determined by letting z = k0r, carrying out a Taylor series expansion

in z, afud making use of the orthogonality relationships

J P,,(ro..())P,(,,o"().i?,(9ldO { 2/(2,n + 1) if i =i (1.3.13)

0 if n $ ,u
290



This equation is based on the relation (Bell [10], page 61)

1_(z2 - (z - 1)"(z + 1) 2+dz = 27 )2 (_l)) (1.3.14)(2n + 1)!

which follows from integration by parts in the left side of equation (1.3.13). This relation-

ship can be proven using the Rodrigues definition (equation 1.3.4). By using the notion

that the algebraic structure formed by linearly combining these vector fields in a ring of

radial functions is invariant under the curl operation also enables one to get an exact

solution to the scattering problem for bianisotropic spheres.

1.4 Plane Wave Spectral Decomposition

An alternative to the consideration of a, full wave solution is the utilization of a plane

wave spectral decomposition, where specially selected plan, waves with carefully chosen.

(i) amplitudes, (ii) polarizations, and (iii) frequencies are used to represent a complex

impinging wave. Two calculations are shown here. They represent the response of a

sphere of brain tissue to a complex radiation field. For the purpose of illustration we give

plots of the real part of the radial component of the electric vector on the intersection of

this sphere of brain tissue with a plane whose normal coincides with the laboratory z-axis.

The two following plots show the real part of the radial component of the electric vector

on this slice at two different times.
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The program is capable of producing on any ixtersection of the sphere with aniy plane

passing through its center the

* the real part of any component of the electric or magnetic vector (6 different 3D

plots)

* the imaginary part of any component of the electric or magnetic vector (6 different

3D plots)

* the absolute value of the Poynting vector

a the absolute value of the radial component of the Poynting vector

* the square of the length of the electric vector

* the square of the length of the magnetic vector

It was found that there are considerable possibilities for cooperative interactions of phase

related sources with this brain tissue sphere described in Bell (Q10]).

Let us assume that the incoming radiation is a plane wave traveling in the direction

-4= sinf(Ob)cos (0b) e" + sin(Ob)sin(ob) 6 + COS(A) (1.4.1)

Assume further that we look at field distributions in the intersection of the structure with

a plane passing through the origin and that the normal vector to this plane is

C"' = .i,(O)cos(€,,), + + .+ .oa.)(0,)K. (1 4.2)

The unit vector in the direction of the yl, axis is defined as a con.staint c timws the cros•i

product of C" and the unit vector in tie bemn direction or

e-db = c(c". X c,,) (1.4.3)

which implies that

,= -.Yi?1(¢b)- + CONO(q 'Y)C, (1.4.4)

Then there is only oie choice for the unit vector iin thltc dirvection of tlh I)sitivc xP, ,,axis

namely

.3. 2 9= 5,,, x ,
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SCO(Ob)COS(¢b)6• + Cos(9 b).Si,(b)• + (--i,(Fh)), (1.4.5)

We assume that the electric vector of the incoming wave is polarized along the x6 axis

and that we would like to use the answer to a different plane wave interaction problem

associated with the direction of propagation being the laboratory z axis and the direction

of polarization being the laboratory x axis. In case,

0b -o = 0 (1.4.6)

we see that 9 = 0 and

i O- - 0 (1.4.7)

This fact is a specialization of the general relation,

co0s(06)cos(Y0)cos(b - 0,) + sin(Ob)sin(O6) (1.4.8)

The rest of the story is obtained by simply computing the angle between t;he Zb axis and

the Zo axis. By computing another dot product we find that

cos(O) = sin(0b)sin(O)cOs((b)cO9(¢o)+

$in•(6 b )dflr( 6 ),.io(&b)81f( 0 ) + coS(Ob)cos(Oo,) (1.4.9)

By requiring that theta be the inverse cosine of the right side of equation (1.4.9) we can

use the standard Mie solution for plane wave incidence to determine, the field distributions

in the plane whose normal is C". We note that in case

=. = 0

that equation (1.4.9) implies that

coq(O) = co.S(Oh - 0,)

which is exactly the solution that one would expect.
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1.5 The Full Censor Solution

We assume that if V is a vector, then

curl(v) [A 1 1 (sin(O)V.0) - 'e
rsin(o) 8 g

r 1in(o) OV, Or(2 (o) ?$) 1 +

, [ ,(rvi) - Iv,] 4 (1.5.1)

We then find that if we define vector fields T1. A, d by the rules

A = F(r)A'(mýn) (1.5.2)

B F(r)B(m.,.) (1.5.3)

= F(r)d•,.) (1.5.4)

that then

cuHr(A) = n(n + F) F (.) +
10 -
•(rBF(,))l(m,,)(6, €1 (1.5.5)

curl(d) - (1.5.6) n
r

and
101curl(A) = - F(r)•,. (1.5.7)

For each pair (m, n) of indices we seek a special solution of Maxwell's equations in the

full tensor bianisotropic material of the form,

A~)'mj)+ (r)BAm,n) + C(?')C(ml,n)(1.8

We now attempt to find combinations of the functions A(r), B(r), and C(r) which satisfy

Maxwell's eqtuations. The first Maxwell equation obtained by taking the curl of both sides

of equation (1.5.8) is, making use of equations (1.5.5), (1.5.7), and (1.5.6), we see that

cl()= = n(n + I)-4-• (.,,, +
r
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- (•,.rA(r))/3( ..,f) +

' () (', )I /C9 +'"r
- ( )A(•),•,•) + - A(m,n,)
r r

=- w - (1.5.9)

Thus, in general we see from equation (1.5.9) that there are linear functions, F, Q. and 1-i,

of several variables such that

= .- (A(r), ()'(r), B(r), (•--,,B'(r),C(r)), (1.5.10)
r r

by which we mean that there are constants fj with

j E {1, 2,3,4,5,6, 71 151

such that

F '= f, 4(r) + f2AN + f 3 A'tr)+

f 4B(,+) + + fAB'(,) + f7C(,'), (1.5.12)
7.

9 = 9(A(r), A!r), A'(,,), 8(r), Br-), 8'(r),C(,.)), (1.5.13)

and1 similarly

'H=WAr, A(?,), 8(,-), Br, B' (,), C(?,)), (1.5,14)71

so that the magnetic field is given by

I= F(,) + g(,)B(,,,)+ 7(,.)C(,,,,) (1.5.15) .

We now obtain the final Maxwell equation by taking the curl of both sides of equation

(1.5.15), and from it equations for a four parameter family of vector valued radial functions

nee(ded to represent the general field ns a linear combination of solutions of the form (1.5.8)

in a full tensor bianisotropic material. In the traditional Mie, solution (Mie (34]) thy' radial

functions are spherical Bessel functions.

(1111,,(H) = ±i(, + 1) • C(m,,, +
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r \Or r

- - (i+•)E + /+ (1.5.1)

In order to see the general fcrin of the last Maxwell equation (1.5.16) note, for example,

that
,J(J.). [ f,- rfA + LA + f+rAl(r)

- (,r ) -.

f4 B(r) + f.5-) + f6B'(r) + f7C(r)](5.)

Expanding the right side of equation (1.5.17) we find that

-~~~ f,: (r) f ~ fA' (r) + f.A(r)
.(r) B( r) (r)

+ f 3 -A()+ f 3 A(r) +f 4 -Br + f 4 B1 (r) +fs-Br +
r r r

f,.(") + f 6B"(r) + + f 7C'(r)

r r

We can then see that the final form of the resulting system of equations in the radial

functions is given by,

KAl(m,,n) + CB(9rn,n) +M4L,) 0(.1)

We get three ordinary diterent"U! equations in the unknown radial functions A(r), B(r),

and C(r) that are used to represent the electric vector. Assuming that the terms in the

tensors are such that we can eliminate the undifferentiated function C from the equation

obtained by equating coefficients of C(m,n) on both sides of equation (1.5.16) we get a

"system of two simultaneous second order differential equations in the radial functions A

and B. A solution is specified by giving values of A, B and their first derivatives at a

prescribed point R., where r = R, might represent the outer spherical boundary of the

layer of interest. Thus, there are four indpendent solutions in each layer. By emulating

the solution of the specific example, which follows, we see that the complete solution is

obtsincd by using continuity of tangential components of P and R across the spherical

boxundaries separating regions of continuity of tensorial electromagnetic properties. A

solution E and H of Maxwell's equations is then for each Fourier mode corresponding to
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the index m and in the layer toiresponding to index p a linear combination of the four

solutions corresponding to

(A(R•r),A'(RP),B(R.),B'(R,,)) =(1,0,0)0)? (1.5.20)

(A(Rv), A'(Rp), (R),B'()) = (0,1,0,10), (1,5.21)

(A(Rp), A'(p,), B(Pk), B'(RP)) = (0,0, 1,0), (1.5.22)

and

(A(Rv), A'(14), B(R%), B'(Rp)) = (0,0, 0,1), (1.5.23)

As it will turn out that these functions depend only on n and and p and not on m.

Thus, replacing A by A((,),), where j runs over the indices 1 through 4 to denote the four

independent solutions, we see that the general representation of the electric vector in the

pth layer is given by

4 a•,,, . [A ) -r)

Sthon) (np) (- )+

Note that the three functions A,,,r') and B() and C,') appering in equation (1.5.24)

are not independent, but the linear combination in the summand of equation (1.5.24)

represents a vector valued solution of Maxwell's equations in the full tensor bianisotropic

material. Using equation (1.5.15) we see that we can write the the magnetic field in the

form

(-a, (Pt ) [.F,)A(,.,)(0, )+

, + (1.5.25)

Using equations (1.5.24) and (1.5.25) and r.equiring continuity of tangential components

of E and H across the boundary r = RP we can relate expansion coefficients in layer p to

those in layer p + 1 by four equations in four unknowns. Certainly, if we had a perfectly

conducting core there would be no trouble in reducing the number of unknowns at the

first spherical boundary by requiring that the tangeutial compcnent of the electric vector

vanish on this surface, For a penetrable core the matter is a Ittle more delicate as one

300



must select a pair of indpendent solutions with at worst an integrable singularity at the

origin.

With what we have developed and will develop we can describe scattering of a general

source by a spherical core that is

* hollow,

* perfectly conducting,

* anisotropic with diago..al tensors having the theta and phi components equal, and

9 bianisotropic and satisfying the conditions described in the following section,

surrounded by any number of spherically symmetric layers which are bianisotropic with

tensors satisfying conditions in the Heritage of Gauss paper ([13)).

In the remainder of this paper we discuss an example with nontrivial values of - and

/ where the electric and magnetic fields can be represented using Bessel functions with

complex index and argument.

1.6 A Specific Class of Examples

We give a simple exact Mie like solution for a class of biianisotropic N layer magnetic,

penetrable spherically symmetric structures. We consider a special class of diagonal N

and J1 coupling tensors with complex hlXnunibers a, fland h being their radial parts and with

complex numbers a and # being their tangential components and asstune some additional

special relations between these. We shall use a modified complex propagation constant k

which in each layer has a square given by

kP = -w 2  - iW/la + aI (1.6.1)

For the propagation constant defined by equation (1.6.1) we seek a simple Mie like electric

vector solution of both the Faraday Maxwell equation (1.2.1) and the Ampere Maxwell

equation (1.2.2) which has the form,
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SQ ,,,,,r ) (0 ¢ )

b(L (- (0)(rZ(b)(kr))) •() +(1.6.2)

where the three radial functions Z("), Z$(b), and Z,() are to be derived and the functions

A(m,n),, B(An), and d(m,) are defined by equations (1.3.1), (1.3.2), and (1.3.3). We shall

derive relationships needed between the radial functions Zn"), Z,(), and a(mn) and the

complex expansion coefficients a(,,L), b(,,,,), and c(,,,,,) needed to get an interesting, but

easily computed, exact Mie like solutions for a the reponse of a class of N layer bianisotropic

spheres to both plane waves and complex sources.

We now begin to develop the contuequences of Maxwell's equations by noting that

equation (1,6.2) mid the three basic curl relationships, (1.5.5), (1.5.6), and (1.5.7) and ihe

Faraday Maxwell eruation (1.2.1) imply that etrl(or) is given by

{( k~~ ii-n + 1Z,~)kr)Cm)+I.. (rZ,(,)(kr.))A .Bmn)]

kv2ý (m0),

-ý~ a( ... ) Z,~(k )~(kiL) + e"` C( 11") +~

b(,I,5T( ( .:) ( Z b ( k ) ) f ~ n iW TIR (1.6.3)

This is the comp1~letely gen1era~l Foariuhy Maxwell equation for electric vectors given by

e(jtuation (1.6.2). We want to solve cquaticn (1.6.3) for H so that we can substitute this

vector valued functionl into the Ampere Maxwcvll equation (1.2.2) and determine what types

of equations thi thr.ee raidial flinitions Z,(), Z•('", and ZcL) should satisfy. Solving equation

(1.6.3) for jtH, we se that, in generel if we simi•ly assume that, N is a diagonal tensor whose

action oil a Vector rl)lrCsvnt(,d in spllel('l (oor(linates is defined by,

n.E= 0 n 0 E0 (1.6.4)

0 0 2 E0
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that then making use of equation (1.6.4)

(-nnn+ 1) r + arC(m,n) kr C(m,n)(m,n)E2"t{:

1 Gmmn~ flf I [arj

,,a)(kr)) ab(,n( ) (rZ(')(k) mn)

Zkrkrkr[C~m~tL) 2  + ~ ~ 2(rZ()(kr)) + aaýmn~)ZvY(k] A(m~n)} 16

In the previous section we allowed W, 74, 7, and 7 to be general tensors and solved for

the general radial functions C(r), P(r), and A(r) used in the represenatation (1.5.8) of the

electric vector, we now assume that all these tensors have the same form as the complex

3 tensor given by equation (1.6.4).

With these assumptions, we see that for our simplified bianisotropic material, the

magnetic vector will then have the form

-f Z()(kr)n(n + 1) ,_ z_(k_)_

+- "rc(mn) I kr1J n)

+ -{a(m.,,)- -(vrZ('(kr) - 1bml~ (0) (rZ(b)(kr)) }B~
{C~n) ,~)kr)+ 1 (rn,n) (n 02(r~)k) + (ka(m1n)Z 4'(")kr)} A4(77,7)]W/ ~, n }r k? ] Z()k)

(1.6.6)

Applying the curl operation to both sides of equation 1.6.6 using the three curl equa-

tions (1.5.5), (1.5.6) and (1.5.7) we obtain an expanded form of the Ampere Maxwell

equation given by,

Z a)(kr)n(n ± 1) Z___
Cl-rk Al) + (.VrC(rni,n) ,j,+

\W /1r r al. r(Or
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i n(n + Z)c,, , (,) (k +

i Ikr 2  +

b(mn,f)h (j)' (rZ~b) (kr)) + aamZ()k~ (m,,n) +

kr Or(kr

(I)!~.(r { c(m~n) k 2  +

b~m~n ) () (rZIO(k)) + aa(mn.n)Z,()(kr)) tn,%)

= (iWI + =)f + •.f (1,6.7)

To make use of the Ampere Maxwell equation (1.6.7), we need to use our original

equation (1.6.2) for t and equation (1.6.6) for 1- to obtain

nEI { [(iw + r)ac")zw" (+)" + -•{ ) k r) +

9,,,,,,) (91 )
br ( (rZp)(A~r)+ aa(,,)Z.()(kr) a(m,n)(,€) +

(iWe,+a)b -) (rZ)(kr)) +

~ s (rZz(,)(kr)) + c (, 9- (rZn&)(kr))

+ [(iwe, + Z,)c(,",,) kr +

i• (.,,.&In)z( O) n(n + ) +a,•, d.,(0,) (1.6.8)
Sr kr 110

The solution of the electromagnetic interaction problem is then obtained by relating

coefficients on both sides of equation (1.6.7) and making use of orthogonality relations to

get differential equations for the, a priori unknown, radial functions, Zn(d), Zb), and Z,(c).

Equation (1.6.7) coupled with equation (1.6.8) is the key to the development of a system

of ordinary differential equations satisfied by the radial functions. Using orthogonality

properties of the vector functions A(,,,,,) and B(,,,,, and C( 1,1 ) defined, respectively, by

(1.3.1) and (1.3.2), and (1.3.3) we shall develop three relationships involving only the radial
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functions, express one of these radial functions in terms of the others, and get an uncoupled

system whose solutions will be Bessel functions with coniplhx index and argument. by

equating ti~eir coefficient: on both sides of equation (1.6.7). Equating coefficients of A(,n,,)

on both sides of equation (1.6,7) we find that

Z(G)(kr)n(n + 1) + Z(,)kr} +

a(:n) ( A1 + 18~mti

-ab(m,n (rZ(6)(kr) =

1(iw e + a)a(m,,) Z (")(kr) + {a=&~n Z( .0(k?.) +

kr ( 8)2(rZlb)(kr)) + ,ac.,)Zt.(kr) (1,6,9)

We can see the consistency of this equation with the equations obtained for the special

case of anisotropic spherical structures ([15]). If in equation (1.6.9) we set 2 and 7 equal

to the zero tensor, we obtain

! {(mn a)(kr-)n(r& + 1
wp r + I}

(I)~7 (!)({Gri-(Za)k)}=[(we + ~)(,)~Ar] (1.6.10)

or upon multiplying both sides of equation (1.6.10) by -iwit we find that if we define the

propagation constant for a class of anisotropic structuires ([151) by the rule,

k2= w'•se - iwjsa (1,6.11)

that then Z(*) satisfies,

)nr(+,("z,,(Y•)) (1.6.12)

which, with the propagation coitstawt k, being defined by (1.6.11) rather than by (1.6.1),

is exactly the equation satisfied by the radial function Z•,(3 for an anisotropic sphere ([15]).
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We can also, in a similar fashion, relate coefficients of Bl(,...) on both sides of equation

(1.6.7) with k2 defined by (1.6.1) to obtain the relationship.

k) r c(OrI kr2

b(m,n)~ (rT)2 (rZn(b)(kr)) + cra(m,,n)Z,(,')(kr)}=

[(iWe + C) ý (-!...) (rZ.Q')(kr)) +
kr Or

a~ {(,;,)! (rZ,(,)(kr)) + 5ab(rn'f) (a (rZ"(b)(kr)))] (1.6.13)

If in equation (1.6,13) we equate the terms operated on by 1 over r times the partial

derivative with respect to r, and then divide all terms on both sides by r we deduce that

equation (1,6.13) is implied by the simpler relation,

( i nn l{ Z,()(kr')+

( -(,(m,n) +

+ ( + ,kr
"il k ) 2(rZb (r)) + 1a(mnf)Z.&')})

klr r Or

[(iwe e+o b(yý) (-Z(') (?.) +

wit k n

[L .. ..... ...II
Equating coefficients of on both sides of our specialized Ampere Maxwell equation

(1.6.7) with k defined by (1,6.1) reveals that

1(in; + {1(,,) f' )(kr' ) +

kr Or

i/,.(l,,~l),(ak )( + a) *f1')(ki) (1.6.15)
W/Lr { J



To corripare equation (1.6.14) and equation (1.6.15) we multiply both sides of equation

(1.6.15) by ,/(,(n + 1)) and we find that

(- fL) -' { (%Zc) (kr) + b(m,,) (-L) (p Z~)k) + =kr

Wp) I kr2( w r Or o,.Z,(,)(kr)) a ...)Z

n'n + 1) C(m•"') k +

r, Z + i (1.6.16)r• a,,,)}: ( n,) + 1)),w(,

Since the left side of equation (1.6.16) is identical to the left side of equation (1.6.14) it

is clear that we have consistency between equation (1.6.16) and equation (1.6.14) provided

that
(iwe + O)(-b(m,n),,, 6~(r)) +

(q) kai,,+,")(kr) - (O) bm,,)ZnZ)(kr).)( Wer + Orr
n(n + i7) C~~) dnV 4 +

W" not tht the consitency krelto + ie by equati n )(1..1 ) (1,6,17)fo te as

where k is defined by (1.6.1).

We note that the consistency relation given by equation (1.6,17) specializes for the, case

of the ordinary anwotropic sphere, where the coupling tensors T and 7, are both equal to

the zero tensor, to the siml)lc anisotropic sphere relation of ([15]) given by

(iwF + ()(-Ib(,","))Z(•)(k•) (W\ + ar r(,,,Z,,)(k.t (1.6.18)
\n(n + 1

where kr is given by (1.6.11) We note that equation (1.6,18) is satisfied if

Z,()(k~r) = z(,b)() (16.19)

and
i-(n + 1) b,, + a(1.6.20)

which are i(lentic•d to thel relatimis derived in ([15]) for anisotropic spheres.
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We, however, now again suppose that k is defined more generally by (1.6.1) and collect

the terms multiplying the coefficients a(m,,,), b and C(,n.?L) in equation (1.6,9). In doing

so we rewrite (1.6.9) in the form,

+ ( i.e + ±.)Z,(a)(kr)

-LaZ((kr) - (1 2 (rZ(")(kr)l a(m,,) +
WA n wp r \Or /n

[(_) 1k (1 )2 (rZ(b)(kr)) bl(',) +

[(iP - 7T )z~) kr )]Cm) 1.,1

By rearranging equations as we have done we are attempting to develop, for our cOass of

bianisotropic spheres, relationships for the radial functions analogous to the relationships,

(1.6.12) and (1.6.19), for anisotropic spheres. Thus, collecting the coefficients of a( ... ,

b(,,1,,), and c(m...) in equation (1,6.14) we have

/--Z.(kr)I a(r, O)

+ [5 ( •L ( "Z)(?Z (k".)) + £±±. "b (3')

LLwtA: J b 7n .+ Znt)(kr)c .""... 0 (1.8.22)

Equation (1.6.22) yields die rvaticnislup

b,(,,,,&)• (,'z 1 ( •,, 0

a z(1d)(k,,)- ý±z :( I .) (k .,) -

+ iIF t~t)(k,)+ 22Ž!I~k. z b)(kin'
i k• (k , I

wt

with the k being given by (1.0.1).

308



Equation (1.6.15), after collecting terms niutotiplying the same coefficients, yields the

relationship

r (mm)7 I&

-{-n(rt + 1)(.L..Z(t)(kr)) + 2r ( ) rZ(~) (kr)

+ 1. +7rZc'(kry C~mn +
kr

-i n(n + 1 aZ$~')(kr)+#, )Z()(k (LAn (1.6.24)
aj9~n w r 9W nr J

Multiplying all terms of equation (1.6.24) by r/(n(n + 1)) we find that

ilp82 IrZb_

+ Z, 1 Zkr ) ()

714 .k 2 Jn \wit, kn(n + 1)

+± e r+t~r Z(c)(k.)} C(m,n)+
kn(n.+ 1) n+

a~n((kr) + (!#L Z~a) (kr)} a(m ,t) (1.6,25)

Solving for the term

I-- (?rZ~b)(kv,))b(,nn (1.6.2.
w-p kr\n

in equations (1.6.25) and (1.6,23) we find that equating the two exp~ressions for U yiedsl,

-[rv i Z("')(ki.) - .!LZ~~a)(kT.)] a(yn,,1.)

- u [ wi+ it~~ I ~ 2~)k)

iCZ(m,) (Akir~) +- 0Z(,)"(k,?) -~nn

-[2ZIL)(kr) - Li!." Z~n)(k~r)] U("(rn)

[(2- kZ(I(k,.) - .7, Z[( Ar)
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Z~)kr ... (1.6.27)

Equation (1.6.27) implies, after subtracting identical terms from both sides of the equation,

that [ + a , a, ) ..m ..)Z( )(kr) =

kn(n + 1) kwp, nf(n + 1) 1
( 0 - ý#V Z(")(kr)a(,''n) 

+

+k] Zb)(kr)b(. (1.0.28)

Solving equation (1.6.17) for c(m,.)Zg()(kr) we find that

{iW,. + +kr)
n(n +) wpn(n +1•)- i)

{(iWe +. a) - -Ž-} b(Mif)Z')(kr) +

O/k ifxk\

WL W~Sr

We could use this relationship (1.6.29) to eliminate Z(,) but wt' would end up with a

coupled system in the other two radial functions, However, for a simpler chiral sphere

where
-= _, (1.6,30)

eq(juation (1.6.29) has the form

+ I) +, + a4 ,!(,,,) ± (1,
,. ,, , , , . = - . ( , + 1 ) 4 -... b (,, , ) g , (k r ) ( 1)6 ,3 1 )

If wu assuive that equation (1,6.29) is satisfied, a8n(d equation (1.6,30) is valid so that

equation (1,6,31) is valid and, furthernmore, that

i _a i/ J1(1.6.32)

then equation (1.6,14) will be of the form

L~. [-in + 1) ( iwF + a~ + i~jlWin/w) 1b Z'() +
WLt (.iwr + a,) + (ia, /I,. )/(wj,)) " kr
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(r) Z(1b (
cr +kiW-b(•',)(-Z()(r)) - i.•k b(mnZ,,b) )(1.6.33)

If we also impose the condition
-= _ (1.6.34)

Wj~Lr W•t

then equation (1.6.9) takes on the form(in(n+ 1)z)(r)+ (- ? (, (rz-)(r))=

(iw 14 +I a) 7Z,(,)(r) + iaZ4 (1.6.35)
WYL

Multiplying all terms of equation (1.6.35) by iwtt and observing that

k a-=k± + , (1,6.36)

where k. is defined by (1.6.11) and k is defined by (1.6,1) we see that

nn~ (Ln,,) 1)=,
1 (7& (rZ(L(r))

k•, r- a/•Z,•,")(,) (1.6.37)

or if we introduce the variable
S- -- (1.6,38)
I"r

the ordinary differential equation (1.6.37) s-ati~sfied. by Z~t )(ki') is

1 ( ) (rZ(j(ki-)) + [(kO + afl) - ?,(u +1), 0 (1.6.,0)

where k, is given by (1.6.11) and k is given by (1.6.1)
The spherical Bessel function is defined am

•P(Z) J +() (1.6.40)

where T,(z) satisfies

! - (0,•(z)+ 1+ '+) (z) =0 (1.6.41)
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Dividing all ternis of equation (1.6.37) by

k2 P k' + a# =-- w2 ,e + ifac - iwpa (1.6.42)

we have with the definition

z2 (w 2 pe - iw~a + #a)r 2 k~r 2  (1.6.43)

the fact that equation (1.6.39) implies

1 (1)2 +[ •f(± 1)] -- 0 (1.6-44)z & Z ,(;) + ... Z2

where

V(V + 1) = ,,(, + 1) (1.6.4+)

We can find a simple formula for the index v of the form

V + .. + (16.46).
2

Equation (1,6.33) gives the second equation which implies that

ji ~ {712 (n + 1) ( iWe +-~ or) + (j~fr/w Z ())1Z )

a + iWF(_ b)(kr)) -• Z(')(k,) (1.6,47)

Multiplying all termins of equation (1.6.47) by -iwjtkr 2 an(l using equntioa (1.6,36) we

dedulce from equation (1,6.47) that

(~ ()2) rZ,~b)(kr)) + (k' + c('/I)Z~/')(kr) -

n. (+ i) , + a + icla,/(wj,) )= " . (1.6.4)
((jW f, + ( + (i)lr ' ) ( 4

where k, is defined by (1.6.11) and k im define(d by (1.6.1). Letting ýb be defined by

( iWC) + a7 + /n/w

¢" k(,,f + ¥ ) ± (iar/3r)/(W)) (1.0.49)
3121



Substituting equation (1.6.49) into equation (1.6.31) we deduce that

C(m,,)Z(C) = -n(n + 1)(Z,,b)b(m,n) (1.6,50)

The equation (1.6.49) is substituted into equation (1.6.48) to yield the equation,(1 (_q)2) r()k)

+ [(k2 +,) n(,,-+ 1)46] Z~b)(kr) =0 (1.6.51)

where k. is defined by (1.6.11) and k is defined by (1.6.1)

Combinations of solutions of equations (1.6.39) and (1.6.51) and their derivatives are

used to represent the electric and magnetic fields induced inside an N layered sphere where

each layer has nontrivial magnetic properties and the electric and magnetic properties are

coupled in the sense that the layers are bianisotropic.

2 Expansion Coefficient Relations

2.1 Representations of E and H

Substituting equation (1.6.31) into (1.6.2) and making use of the relation defined by

equation (1.6.49 ) and the modified propagation ronstant k defined by (3.6,1) we see

that we can satisfy the Faraday and Ampere Maxwell equations for the special class of

biattisotropic spheres treated in the previous section with an electric vector of the form,

E +

(z ) ,n)E(),n)(9, 4) +

[-n(n + 1) {(b1]b(,.) .. r

where the radial functions Z(,") and Z(b) satisfy vquations (1.6.39) and (1.6.51).
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Now making use of a form of the relation (1.6.51) given by

1 ()2)(rZ(b)(kr))=

+ [fl(n +1)(b _(k2 + Ckg)]Z,()(kr), (2.1.2)

where k, is defined by (1.6.11) and k is defined by (1.6.1) and its square is equal to the

square of k, plus o'/, we will be able to simplify the equation,

curl(Jt) (mnE{

(mn)r)J

(-n(n + 1)(b)(r'••) Z)(" Aj(m,) +

b(,,,,n) T- ýr (r,-(k ))""" (2.1.3)

In fact, substituting equation (2.1.2) into equation (2.1.3) we see that

curl(P) =

(ma)I,) + ar n ) n) +

z,(,)(k,.)
(-n(n + 1)(b)b(,,,,,L) Z) A(,,,k,)+

where k, is given by (1.6.11) and k by equation (1.6.1).

Sonm telescoping in the right side of equation (2.1.4) yields the reduced form,

curl(E) =
C( Z,("")(Ikr)) BY('•"

.{+(,,,,) [(.± 1)z____(__") , + (+.,,n+
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f(2.1.5)

again with k and k. defined by (1.6.1) and (1.6.11), respectively.

Defining a new function 14V1V•) by the rule

W,la)(kr) - ()(rZ(")(kr)) (2.1.6)

or equivalently by

W. "(kr) =LMG)z (2.1.7)
z - kr Oz

where 'VO} is defined by (1.6.44) and where C. is related to the parameter v in equation

(2.1.7) by equation (1.6.38). We define W,(6)(r) by changing a to b in equation (2.1.7).

Using the new function Wna} defined by equation (2.1.7) we define

curl(..) =

{a(M,n) [ + 1t) '" € (m) + ,rm,,+.kW,.')(kr)B•mft) +
(m,n)ET L

-b(, ,1 ) [(k' + cvi)] Z Mb(kr) 1(mn)

where k and ka are def ned by (1.6.1) and (1.6.11), respectively.

In terms of the function Wn(a)(kr) we express the function 1 by the rule,

iW~ii =

{_[ I,,) + 1) k ('n) + a(mn)OkW,(a)(kr)("nn)] +

b Im) F(ka' + rkO)] Z(')(kr)A(M,ft)}

(E { a(,,,,n)OZ(Z)(kr)A(,,,,)(, O) +

/ +([-,(, + 1) {(r,?,)(;, 0) +

fl• (- (O) (rZ(O(k,)) B( 0,,(0, )} (2.1.9)
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with k being given by (1.6.1) and k, by (1.6.11)

Collecting terms we find that equation (1.6.31) which relates the function c(m,,.)Z(•c to

the function Z,(,) can be used to derive the relationship,

a .. rZ(4)(kr) z(_)(kr)

(m~nEX 1 . a~mn~nn ±1) ~ r + ~kr] C(m,n)(m,n)er

[ n)1! (rZ~a)(kr)) - °b(m,, ) ) (rZ2)(kr))]+ a(. n .m•n)

[)+ b~m~n) (rZp,6)(kr)) + aa(,,,)ZW()(kr) A(nt,n) (2.1.10)
c ,,) krI +b ,)kr Or I

and we could then use the differential equation (2.1.2) to simplify equation (2.1.10).

So far we have been trying to develop representations of the electric and magnetic

vector in a special class of bianisotropic spheres. Let us now consider an N layered sphere

and let k4 denote the propagation constant in the pth layer given by

k -= W (P)L(P) - iWj(P)Oa(P) + &(P)#(P) (2.1.11)

where for the layer with index p, wherc p runs from I to N for the actual layers of the

sphere and where N + I is the region outside the sphere, and where p(P), e(p), O(P), a(P)

and #3(P) are respectively the tangential components of (i) the magnetic permeability, (ii)

the permittivity, (iii) the conductivity, (iv) the Faraday Maxwell equation coupling tensor,

and (v) thl Maxwell equation coupling tensor, where these five tensors all have the same

form as that given in equation (1.6.4).

Let us develop the full theory using the functions,

W("j(k 1') (":1) (kp~r) (2.1.12)

where the propagation constant kP is given by (2.1.11) and where Z(' j(,k r) is the singular

solution if j = 3 and the solution with the integrable singularity at r = 0 corresponds to

j= 1.

The expansion coefficients in layer j, associated with the functions, Z(" 1)(kpr) and

with the fimictiolf; W(,i)(A) which have the integriih singtdarity at thie origin will be
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denoted by a... )an and the coefficients and e(n•) and O(),) will be multipliers of

Z (,,3) and thecoffcens n 3(in
the functions Z,-P ,,Pr) (n,p) d., which are singular at r = 0. The electric vector

with general representation given by equation (1.6.2) is in the pth layer' of the multilayer

bianisotropic sphere represented by

=({,r,) - :( kpr) - (,f)Z ( kPr), .(n,.)(O, ) ) +

[-n(n + 1) (MCb .,.) ,krld( ,..., •) +

[-n(n + f )6. 1/(,). w,* *]*,(0,) 0)+

(,, .w (,P)(klr) (k'" ) ] ( (2.1.13)

where k. is defined by (2.1.11).

Using our previous expression for the magnetic field vector but using the definitions

(2.1.12) and the fact that the k, defined by (2.1.11) is the propagation constant in the pth

layer, we see that the Ampere Maxwell equation with a coupling tensor defined by (1.6,4)

the magnetic vector in the innermost layer with p equal to 1 has the form,

(M,n)ET

-i-- I ~ a( , 1, ) (k )n (n + 1) ~ Z2(~7
i lt Z ., . + 1' (.rC(mnl) k } ,,)
a•--, ' 1 W"" (k r) + ab"( - '•- (rZ('"1 (kpr)) I B(mn) +

b)(i () (r (kpr)) 4- aa (k r) }A(n)j (2.1.14)
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where k. is given by (2.1.11) Now using equation (1.6.50) and equation (1.6,20) we see that

equation (2.1.14) can be simplified by the telescoping of terms and specifically making use

of the relation that is derivable from equations (1.6.50) and (1.6.51) given by

(Mn) kPr 2  +

b(p, -) (1) (,Z(..,)(k,,))=(M n) ( kpr Or (8rJ

bP FW (w2 S)eI(P) - j(,jU(P)0.(p) ~M) (b " kr (..5

(M,n) + k a/ (nP)]Z,,(r)(11)

In doing this we see that the magnetic vector in the core of the multilayer spherical structure

corresponding to p = 1 is giveni by

': -(+) 1,n(p) + 1 Z(b") 0(kn)

[ i ( p,) + .,Cbn(n + ___ _ (, n,, p _

rMn~ WPr) (P) )(k•2 r ý bP

+( P ( p, k CW(,'-,-+- {a(•, ) hL,(,pr, + (niKP) ))} f(m,n) +

{b(p)( [L ,-k] Z(..,k(k r)+ 'a' (- )(,, r)}X(•v° 1 ,) (2.1.16)

where k, is defined by (2.1.11) and where we have made use of the relation,

•'•/O,)ep)- iw•(p)•('() + &•(P)fl(•)
k = W2 AE+(2,1.17)

We now consider the representation of the magnetic vector in an interior layer of a

multilayer sphere that does not contain the center of the sphere. The magnetic vector has

the representation in terms of functions Z(, 1) and (,which have integrable singurites

at the origin, an, the functions and whose representation, in the case considered

here involves Hankel functions with complex index, The magnetic vector representation

in a penetrable shell is given by

I- = / i,\ ' (,,) Z(, k , lr)n (it + 1)
J ~,,P,") .... . I +

(,n,n)(7 3
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(1,) Z 7()n(n, + 1)_( -1 P)•,., +ý(~)k •),,,,)(rt'n) 9 • +
a(7m'L) r (11)b() k-PrI

Z /'+(k¢p r)
r4)blf )3~ k~r C~~)+

.(n), p PW(+')(k r'- 1 ) kpW(4k, r)} m) +

WOW (M) ( np ) (k () 0,)) W

W7- (-Zp) ) a0P (m)bn)( W6' (k kr)) + a(P)OP))(W~ (kr)}-'~pn

i ) [ bk ) .(ZP)'(1k-r) + (P Zb,3) (,p)k r) +(18

~~i(P) )Xa. r+ ()Z(aP) (kr)} A(tn~)]

•-7~)( r-). + ce(,., a,•)" "

where kP is given by equation (2.1.11) and we have made use of equation (2.1.17).

We now consider the representation of the electric vector in the core region p = 1 of the

multilayer, spherically symmetric bianisotropic structure. Making use of equation (1.6.51)

we deduce from equation (1,6,2) that

{(n ,) , (0 ) +

,9 rZ (b,')(k , ?- '[-n(n + 1) {'b]b ,n) "•(!k'r)~t :; ' ) +

kpr rJ (, t p)

where kP is given by (2.1.11).

Equating tangential components of .9 across the shell r = Rp equation (2.1.13), the

representation of the electric vector in a shell, region, implies that equating coefficients of

A(m,n)(0, 0) leads, for r equal to Rp to the relation,
[a(P) •,(a,l)h () (, rk .•

(mm,.)-(t,p) r) + ,(Pmn) Z(np)k r)]
__ r.(p+l),-"' ( ki) *. ± (/tn ) ( )+l) ,I)

La(fl, 1,I") (k (p+) P+IJ ý(m ) (k p+ 1 ~ (2.1.20)(M..mn).(,L,n,+I) +10) + a("It,) (,I,p+ )( plr) ]2, 20

Multiplying both sides of equation (2.1.13) by fl(m,n) a[.l integrating over the sphecr

r =R, we deduce, for r equal to Rp that

,[0 ') Z!•, k v), + ,5(P), (1":3)•, r)0(,,,,) ,,,,• • •(,n ,,, )'- (,,, 0 1

319



- ,[bP,+,)g.I+) (klFt+l) + /"?Z{ , )(kylr)] (2.1.21)

We now set up the differential cquations which state that the tangential components

of the magnetic vector are continuous across the boundary of a sphere separating regions

of continuity of tensorial electric properties. Equation (2.1.18) implies, upon equating

tangential components .9, on each side of the boundary r = Rp, by taking the dot product

of both sides of (2.1.18) with respect to d(,,,n) and integrating over the sphere r- R, that

S (P) tW (,,1)- , ,,) , ,,(.), ,
L a(,,,(,., P) (,, pr) ) + k, p W(4)?(kpr)} +

\' '(.nf.,lI) (.T. (, kp,)(")) + "- (?n,,•n) KP,(.,) (k, J P

i a!•,+l) W "' 1. ( k(r), +0+') (u,3)
.0j ) . •,,, + (?,P+,,m + w 7,,,+•Ikp+,r)I +

w~sP+') a(P+l1) lJl (W(b'l.) (k +tr)) + a(P+l)#(+1,(W(b-3~.) (k,~+l7))} (2.1,22)

UsAng equation (2.1.18) and equating coefficients of the vector I on both sides of the

sphereical shell = R. we have

( ' ) [-kp,,Z(k ý (,,)( + 1( r) +(P) Zb,'b(k+ )} ,

wp p (fi ,,,0 . ( f.) ,p lP) P-o ,.(,,m ,,%) (n,,)•tt+ P

WiL(P)( +,, , ,,)

0t(1,P+ )+ ( (nI) (k, , )[- +a( ,,• I+1)Z()(k + ai
, b(P+l) ,/-+I ( " ) (..'17,

a))

i+ 0 ,,,, [-A., JI(,t'+j)(k,,+j")}
(~Z(" (k ) r),+,., +l,' (O '+ ') ZK+"z ( k." 1, , (2-1.23)

•/•+ ) . (,L,. (11,p+l) kr,+lr)+(,,, (,,.,P+I) ,,+

2.2 Transition Matrices

We liow att('1Upt to devwlop tranisition niatrices which will relate expansion coefficients

ill onil luyvr to v(pli1lsio1l ocfficivnts il a•iother layer. We ktart with equation (2.1.22);
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we find, after multiplying both -ides of this cq, ation by p(P) and dividing both sides of

equation (2.1.22) by k., that

ai..( Oip) ~v(,,kpr.) + a(.(n) Kpa,)/z.0 " I-

(-2(-))~p (""(kr)j + (Wba ( Iv ,r)}a(m,,.) (np)'. P (m,n• ,p)

,,('+')W~(a") (k r) + w p+l) W(a,3) (,r- ,+

(;i(P+÷kp ý {(m.,, (n,p+l>tr +P .. , K ,+) t• K +

(-pi(P+)k(°,) (m~n) (n,pi) P (mn O +I)/ ,( ) (" ")) (2.2.1)S•(,+I..()(l {b (W(," +)(w,'Ckpr)) + f"W(,•'")" (k"r)) (.2.1

Multiplying both sides of equation (2.1.18) by A(.,,,.)(9, 0) and observing that

LIM J /l, A(,n8,,)(" , 0)dA

LIM , A(m•,)(0, k)dA (2.2,2)

r . R+, Sp(r)

we derive equation (2.1,23). From this, after multiplying all terms by .-iwp(;')k7 and

dividing all terms by k', where k. is defined by (2.1.11), we derive the relation that

(a(PU ) {a(m" ) (a,,) (k ?-) + a(,( ) Z (,,3).(k, ). +

{(I) .Z ',(k r) + / ( k) Z ( , t) } ,
( K, ) n pl '(M~n) (np)\• J -

/i(P+) )k 7 a+)• ,,,r , ) (" ,p+ l) k p 4. j,) +) .(r ,n') (n' .+ I) " p + j I 7 J +

[ ( (p+1)'(b]) { + , (p+I)(b,3) )( ,r)}. (2.2.3)p,(P+I)kp 1.(,n,n) •(n,p+l)t '+il On) + (,,L.)".,+lt p i)

where k. and k,+, are defined by (2.1.11).

We now define parameters which appear in the matrix relating expnLsion coefficieiUts

in one layer to those in an acdjwc ,nt layer. We obtain these by considering teriis appearilig

iln ecitiatioui (2.2.3)
(,+,) =,>(P) k 1 (2.2.4)

S t"+') )3
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Also
S= ('•)'(•+----•)"(2.2.5)

p((++kp

with k. and kv,+ being defined by (2.1,11). A similar term appearing in the inner shell

matrix is
p(p) /o0)
(,) =(2.2.6)

A ternm in the second row of the outer shell matrix is

0,2) p(P+0k+)• (2.2.7)

Another term appearing in second row of the matrix is
..O+I) -•*•a•t 228

=(b.2) - ( (P+1 (2.2.8)

Th'e corresponding term in the inner shell matrix is

(0b., = k (,- -- (2.2.9)
""(•,J) deie y v65)

With the special functions Z("j) defined by (1.6.39), and Z,(,6,,), defined by

and the derivative terias defined by equation (2.1.12) being evaluated at the separating

spherical boundary r = Rp, w, see that the matrix equation relating expansion coefficients

in layer p to those in layer p + 1 is given by

, ) (,3) 0 0 a',0

nP) (l) PO(O,) (,t,p) (bg) "(",p) V(M,m,)
(P) , ,(rI) (p) 0.,3) (b,) Z(b,3) .(p)(I. ,,,: )• ( ) P(,,,,•) (?I,l) " (-,,) Otv) °(,,,n)

TV (h, ) WO)3) (7)
(n,, ) (14:p) j (,,,,,,

Z ( " ) ( " ' •)0 0 .( P + 0

,,) V 7.(1,3) (p~ +t)W (b.1) (P .+ i b,3) (7+4 )

"(,pv+1) " (,p+ ,+ P(I,) -•(n•,p) + 1) P(b,2) (np+ I) O,(tl,,) (2.2.10)

(P+I) "(,,,tI .) ,+ t)•{.,:•) (. + 1) Z(h,,I) (P+ ) Z (11,3) b(P+ I)) (tt3 Z•• + l ¢ (, , 1) ' p+ I) t (I,3) / (ntp+ !) P(b,3) ' (n,p+l) (Il,nt)1

aT (bl) 0,, b,3) [P )+,)(],H 1 .;+ ) '"(,,,•+ ) J ' (1•,m'

'J'hi, (,iIath r'un ( 1)(, written Illorv (cflRlictly ill the foriim

00 (a(P+ I
"•(ml (F,,f,)0 (o) Q U+,)i

,,,,+ ,,+ ") (2.2.11)
04O, b.(p+,}

32(,2,.)
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To compute the inverse ot the matrix TO') wx lied its transpose which is given by

Z(,l)(kcR? •) VV,1 l)(kpRp) pp) )Z7(,:, Rp) 0
(n,p)t*' " (,P@ t* " (,a)',3 ,)'p"

Z(a,3) (ki.R,) n • Z(3), O (P) .,Z(a) (k Rz) v 0k(,np)v ~ " ( kpt, ) t'v •j •(,,3)"(t,P,•) p", p• s 0P '45' "

P(b,2) (.•p) ( 7( P,,p(kp,) W (, ,p) p PJ

0 P(6,2) " (np)(kPR) - 'I - (n,p)', ) ."'P A:p) j

(2.2.12)

Wronskian relations will show that we can define a new matrix Q(P) by the rule

Q(P) = T,()( kpR)- T,+1)( k+ Rp). (2.2.13)

Using equations (2.2.11) aand (2.2.13) we see that the expansion coefficients in the core are

related to the expansion coefficients in the outer shell by the rule,

a (1) a (N+i)
"r"(m,n)

o .•(N+i)b(l~) 0(+e1)

#j(N+0)L. 0 a L "?nn).

This gives us four equations in four unknowns, since we assume that; the expansion co-
.,(N+I) and (N+t)

efficients ,,,,)and ar, e determined; these expansion coefficients could define a

complex source such as a radar or laser beamn in the near field (Bartot [8] and [91, Pinnick
,(I) /•,, ld stl ig

[39] and [37]). Solving equation (2.2.14) we find values of (, nd) an(d)

that 00) and i(0) are both zero, we can Vasily obtain the expaision coffi'iet'll.ts in every

layer of the structure. If we define the tmatrix ?'-,) by the rile,

" _= T I +)( k,,+1 R,1)-t TI; )( k,, ,,) (2-2.15)

We See that the definitiotn of Z,(') by (,q.lntion (2,2,15) implics the relationsshmil

(1i) 04 1)

(i'J ) - (7u,11)
b(") (" ) (2.2,16)

h-f+ I)

g~ ~ 110 170+)

lbet~wveli vqliFi~llsiol c fi cf'.lh , in n.(lll .,111 'il t',t 1iy(,H Of ~hI, -101('6011i1 Ht.r f.11r3,
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These computations using equation (2.2.16) are facilitated by the fact that we have

exact formulas for the determinant and inverses of the 4 by 4 matrices T,2P) Let the deter-

ininant of T(P) be defined by

(n (P) 
(pn 

( kp)

{•(b'l)f (6,3) Wx(b,1)rl • .(b,3)r• '
"(,,p)• kpRp') W .,p) ( k•Rp) - ,(np)(kp"p )•'-(%,,,(p) )) +1"*v/f J

~ 3) [a)( R )]
{Z(b,1) (6,3)k I (b 1) (b,3)

"(,',,,, pRp)Wi.,.•(j) p Wip (•(kpp)Z(n.•(k-pRp)ý (2.2.17)

which means that the determinant Ap, is the product of two Wrionskians W(":,) and W~eb),

where
W,(b) - (bI(~)r , W1(b,3)(k. R W Tvb,j)(k Al ) (b,3)r

(tP) = "'(,1,-,)•' 'P (11,P) P p (i) P••" P "'n,)•)•(,• kpRp) (2.2.18)

We find that equation (2,2.17) and the Wronskian relationship,

(") kp•) = -krRp) (2.2.19)

enables us to compute determinants with no roundoff error. This enables us to got exact

formulas for the entries of the inverse of this matrix. If (Tp)(k,R,)- 1 )( ,j) denotes the en.ry

in the ith row and jth column of the inverse of the matrix T,•P), tl•," tl- eintry in row 1

and column 1 of the inverse is

Thv (1,2) eintry is

;.•z(,:9•(b)

(T(,, ,)") ( , 1 )') =0 (2.2.22)

The (1,4) term ni

(TP(k,, W( Z"'(R (- ) )\"()k"R))/A, (2.2.2-3)
kp/
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Equations (2.2.20), (2.2.21), (2.2.22), and (2.2.23) define the first row of the transition

matrix. The entry in row 2 andt column 1 of the inverse is

(TP)(kpRp)- t )(2,1) (,) (2.2.24)

The entry in row 2 and column 2 of the inverse is

(T)(=-')(2,2) = Z( k,) W(') • (k)r4)/A,,, (2.2.25)

The entry in row 2 and column 3 of the inverse is

(T,)(kpR,)-1 )(2 ,3 ) = 0 (2.2.26)

The entry in row 2 and column 4 of the inverse is

(2= p) (k) (b) (kR ,, (2.2.27)

Equations (2.2.24), (2.2.25), (2.2.26), and (2.2.27) define the second row of the transition

matrix. The (3,1) entry is

(TI)(kV/•)-I)(ý, Wb() = ()") b-'Rp) 1b)(kpRp)/A,, (2.2.28)

The (3,2) entry is

(T,')(kRp)-')(3 ,2 ) = 0 (2.2.29)

The (3,3) entry is

(T,,•)(kpRp')(3) = W,'),(kRp)W(,) -)k,, = (2.2.30)

The (3,4) entry is

(T,')(kR,,)-')(,•,4) = --- Z(,", Rp)V( k,,) p(,(Rp)/ A, (2.2.31)

Equations (2.2.28), (2.2.29), (2.2.30), and (2.2.31) define the third row of the matrix. The

(4,1) entry is given by

(TP)(k,,lR,)-)(4,I) - W (- )(p p
(p3=5( R) (k i ')(k,,Rj/z, (2.2.32)
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The (4,2) entry is

(T.1)(kpRp)')( 4,2 ) = 0 (2.2.33)

The (4,3) entry is

(= -W(In,)(k P P (,P)(kpRp)/LAp, (2.2.34)

Finally, the (4,4) entry of the inverse of T,() is

(TP)(kpRp)-')(4,4) =Z(,b,Ip)(kp ()VV

SZ(~,,(k )(,p)(kpRp)/Ap, (2.2,35)

We have therefore obtained round-off error free expressions for the entries of the in-

verse of T,,P)(kpRp). Thus, except for the expression relating the expansion coefficients in

equation (2.2.14), all computations are carried out by exact formulas. The matrix inverse

computation requires no subtractions or additions and consequently there is no round off

error if the Bessel and Hankel functions of complex index and their derivatives can be

computed precisely.

2.3 Determination of Expansion Coefficients

Let us suppose that we have an N layer sphere subject to plane wave radiation. By

multi)plyig the inverse of T,(P) evaluated at kpRp by the matrix T,(,P+l) evaluated at kv+I RI,

We Obtaining the matrix

T,,P'= T,)(k,(Rp)-'T(P+t(k,+,R,) (2.3.1)

relating the expa.nlsioll coefficients in layer p to those inl layer p + 1. We then muiltip)ly all

of these niatrie.s (2,3.1) obtaining a matrix

yi'L . (2.3.2)

where N is tCie inber of layers of the sphcre which relates the xpalnsion co(effcients

ill the (core to thOw oXplansion v(Oetflficilts ill the space surrouding the slphere, This gives

four ecitiations in four tinknowns. But it is really simpler than that. Using the second

1in1l foi'th,) rows of this nIatrix e(quationw, We can rtIlate the, ('XpIllsioil c),fihcivnt., of tOw'
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scattered radiation to the known expansion coefficients of the incoming radiation!. We the(ni

have in the first and third rows of this equation a fo.-mula for the e.paasion coefficients ii,

the inner core.

3 Optical and Absorption Efficiency

3.1 Definition of Terms

The optial efficiency of a general N layer sphere exposed to plane wave radiation is

defined to be

II(Q Q )&&I) (3.11)

where

the incoming radiation's Poynting vector (3.1.2)

and where

Qa = the total absorbed power. (3.1.3)

and

QS = the total scattered power (3.1.4)

and

RN = the radius of the outer shell (3.1.5)

The absorption efficiency is

AL= (1 ii) (-k) (3.1.6)

Thc.' efficiencies (0 and A, are unitless as Q, and Q, both have the units of Watts, and

the Poynting vector S' has the units of Watts per square meter, and the apparent projected

size, 7r times the sqtare of the radius, has the units of square meters.

These quantities can all be computed systemaLtically just with a knowledge of the

expansion coefficients of the scattered radiation and the expansion coefficicents of spherical

harmonic representation of the plane wave iepreseCltiig the impinging eh'ctroinagnetic
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wave. Suppose that E' and H" are the electric and magnetic vectors of the scattered

radiation and suppose that ii and k] arc the electric and magnetic vectors of the incoming

radiation that stimulates the sphere filled with electromagnetic material. The quantity

Q, + Q. = the total extinguished power (3.1.7)

is called the extinction and is calculated by integrating the Poynting vector,

9 = (1/2)(P" + P') × (f'l + #')') (3.1.8)

over the outer surface of the sphere. For-a plane wave, the result of integrating

9' = (12 ×P (.g')') (3.1.9)

over the surface of a sphere is zero, since the average value of the normal vector to this

surface is zero, The rate at which energy leaves the surface of the sphere as a result of

reradiation of the energy incident on it is similarly determined by integrating

9•' = (1/2)(9s') X (,q")') (3-1.10)

over the surface of the sphere,

In this section we shall study how absorption and optical efficiency depend on the wave-

length or the frequency of the incoming radiation, but we shall transform this wavelength

or frequcncy, respectively, into a unitless quantity called the size parameter. If

w- 2.ir.f (3.1.11)

then the size parameter is defined as

2.Ir . RN
SA= A (3.1.12)

where
2. 7r. = 2 (3.1.13)

or
2ir

A = (3.1.14)
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where

Po= 47r x 10-7 (3.1.15)

and

0= 8.854 x 10-2 (3.1.16)

are the free space magnetic permeability and electriteal permittivity.

3.2 Computer Calculations

If we look at the representation of expansion coefficients in terms of index of refraction,

we find that as this index of refraction gets close to an imagninary part of V2 and a real

part near zero, that there is very strong scattering and absorption at apparently periodic

values of the size parameter. The first graph below shows the absorption efficiency uf a

spherical particle with an index of refraction m given by

m = .0001 + i(1.4140) (3.2.1)

and the subsequent graph shows the optical efficiency for the same index of refraction.
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These graphs suggest that scattering is much more important than absorption, but as

we allow the size parameters to become very large there is a cross over in the scattering

and absorption efficiency curves for the same index of refraction. This is shown in the next

computation represented on a logarithmic scale which considers size parameters as large as

1000. In this graph, there are the same early maximums as before, but they simply cannot

be seen on the logarithmic scale. Some of the maximums are shown in the following table

size absorption optical

parameter efficiency efficiency

.010000EO .43077010E + 2 .3090E + 6

.973500E0 .13852698E + 2 *2388E + 4

.168930E1 .86167641E+ 1 D9345E + 3

.239210E1 .66955849E + 1 .6547E + 3

.309430E1 .56436135E + I .6412E + 3

,379800E1 .49728349E + 1 .7194E + 3

.450370E1 .45070065E + 1 .8206E + 3

On the vertical axis of these graphs we are computing the logarithm of the efficiencies.

When the imaginary part of the index of refraction is slightly above the square root of

two, we see a strong peak in optical efficiency that is due to absorption efficiency, The

graphs which follow show, over a small range of size parameteres, results for an index of

refraction of

S= .0001 + i(1,4144) (3.2.2)
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In th,.sc calculations going out to large size paraniOeers, around 8000 size parameters

were considered along with a procedure which searched for the maximums and the troughs

in the graph. The following table shows a computation oF the low points in the graph of

absorption efficiency,

size absorption

parameter efficiency

.700 .38222365E + 1

.147 ,43105236E + 1

.218 .39434158E + 1

.289 .35937823E + 1

.360 .33305300E + 1

.431 .33305300E + 1

.502 .29903701E + 1

Note that the locations of the troughs in the above table are in between the maximums in-

dicated in the previous table, For this particular calculation great caro, must be exercised in

locating the maximums, When the spherical particle has a greater permlttivity, the peaks

are broader and can generally be observed graphically by a straightforward computation

with evenly spaced size parameters,
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3.3 Highly Efficient Two Layer Spheres

Van de Hulst ([47]) develops the relation between the permittivity el of the core of

radius qR, where q is a number between zero and one and the permittivity e2 of the shell

of outer radius R which will produce a very high efficiency. This relationship ([47]) is

((1 - 2q3) + d2(4 + 2q3)
= (2- 2q3 ) 2+ 2(1 + 2q3 ) (

The following shows some computations of efficiency for two layer structures which nearly

satisfy this relationship. Figure 3.3.1

Optical Efficiency vs Size Parameter
ins: (2, 0) mc:(,OO01, 2) vc/v: 0/5

The figure below shows extinction, X, absorption, A, and scattering, S,
1000 efficiency as a function of size parameter. The index of refraction of

the shell is 2 + Oi and the index of refraction of the core is
.001 + 21. The ratio of the volume of the core to the total volume

1o0- of the spherical structure is one half.
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1000-Figure 3.3.4
1000 This figure shows the optical efficiency versus

size parameter for a two layer sphere with a core
having an index of refraction of 0 + 2i and a

100- • shell with an index of refraction of 2 + Oi.
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ma: (2, 0) mne.(O, 2) VclV: 0,5

Figure 3.3.5
This figure shows the backscattering which

is the unitless quantity of the total scattered
power per steradian divided by the power incident

too_ on the sphere in a direction opposite from that
of the incident beam.
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- -.1..... Vs aize vmmeler

ins: (2, 0) mc:(1,e.6, 2) vchv: 0.5

Figure 3.3.
1000- This figure shows optical efficiency versus

size parameter for a two layer sphere where the
ratio of thb volume of the core to the total volume
of the spherical structuire is one half. The index

0oo0 of refraction of the core is .000001 + 21 and that
of the shell is 2 + 01.
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Figure 3.3.',
1000- This figure shows the backscattered power versus

size parameter for a two layer sphere where the
index of refraction of the core is .000001 + 21 and

100- that of the shell is 2 + 01.
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4 Spatially Complex Sources

4.1 Expansion Coefficient Determination

We provide the user with an analysis of the response of an N layer structure to spa-

tially and temporally complex sources of electromagnetic radiaton. Let 9(m, y, z, t) and

1?(X.), z, t) be the electric and magnetic fields of a complex source with Fourier transforms

2(my, z, w) and R(x, y, z). We suppose that this radiation source exists in layer

pe {2, 31. .N+ 1).

where N is the number of layers in the spherical stucture. Let us suppose that this energy

source in layer p has an electric vector (see equation 2.1,1) given by

[-n(n + ) } (,,,) r( ,,'l(, +

bjn~ 1 (( ) ~ 6~~ ))~ ) (4.1.1)

Observe that the coefficients "( are determined for every p > 1 by the relation,

LIM f c(,) 2"),Y) ,W) 0ý,,)( O, 0 )"sin( O)d~do

a(17 ) (a),(,,, .,(,,,P) ,• l ) (4 .1.2)

where

C(r) = {(' Y, Z) : X+ + y+ z 2-= r} (4.1.3)

Thus, equation (4.1.2) gives us the expansion coefficients for the representation of 9 just

outside the sphere C(Rp, 1) defined by equation (4.1.3). The coefficients , are deter-

mined by the equation,

LIM [f fC(,) ,,(r, y, z,W. w'(,,,,)(O,9)*,in(0)ddd0, , - .. . .

R --, ,_ f fc(,.) (m,,,)(6,,0)0 ')*,sin(8)d6dq j
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(Yrw0') .- W(nbp)(i ) ) (4.1.4)

where, using the definition (see equation 2.1.12),

W((,, ,) (, Z(b) (4.1.6).,, ,., = r O r ( nz( ,p)(r)(4 .)

and the functions 4(m,n)(e, 4) and .•(,n,,)(0, 0) are given by equations (1.3.1) and (1.3.2).

We will show that the integrals in the denominators in equations (4.1.2) and (4.1.4) can

be determined by an exact formula. To exactly evaluate the integrals appearing in the

denominators, we use the equation (see Bell (10], equation 11 and equation 18) which

states that

12 fir { (Pnl(CO8(e))) + mn2 p.sin2C(O)) sin(8)d~d4'

ir~ ~ ~ 0 d in()!

= (- n+),((n - in)) n(n + 1) (4,1,6)

where the functions P,,"(x) are defined by

P.pf(X) = ( 2nn Dn+m'(z-2 _ 1)" (4.1.7)

of the associated Legendre function,

We use the basic definition

P(x) ( (1 x2)/) D +'m(xW - 1)" (4.1.8)

of the asmoviated Legencire function, If

X= cos(O) (4.1.9)

then
dO - d (4.1.10)

and

fp• P$,(Co=(O)) in()d8=

1 +1 (1 x 2 )•)n(Dt"+"L(x2 - 1)n)2dx - 2(n+ + n)l (4.1.11)

22t1(n!)2 I-i' -(2n + 1)(n - in! 4..1'
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The orthogonality relationship follows from the fact that

d dx d -'SnO d (4.1.12)

implies that

The derived identity then follows froom an integration by parts and a use of the differential

equation relationship,

(1- X') [( d)Pr"( ) + (-2x) d Pn") =

[-7(n + 1) + "--X] PM(z) (4.1.14)

Details of the analysis can be found in ([11)) sand the basic properties of P, are found in

([52))

4.2 An Exterior Complex Source

We now define intralayer relationships that give us the induced field when there are no

sources in layeis indexed by

pE {2,3,..,N}

where N is the number of layers in the sphere. The intralayer relationship yields, for a

penetrable core,
a Ol) a(N+ ,)

(m,n) (m,",)

JM(N+t)-",.N (4.2.)

(In'tk)(in,n)

bo t(N+3)
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We can separate the four, a priori unknown coefficients, from the known expansion coeffi-

cients of the known external source by iewriting equation (4.2.1) in the form

(N(N+I

o - (N44) 0 (4.2.2)
0 -SN (m = (N )

(m,n) 0 b ,,
o(N+I) 0

Thus, relating the a priori unknown coefficients to the known expansion coefficients a(N+l)

and 6(N+ ) reduces to the problem of finding the inverse of the matrix

T - S, (4.2.3)

4.3 Interior Sources

We now suppose that there are interior sources in the layers. This could be important

in assessing the impact of a sweeping radar on a person living near the radar who has one

or more metalic implants to replace broken bones or clamps to hold them in place. The

potentially serious nature of this can be seen from the fact that ([55] p 40) has used this

concept to postulate a design for an electromagnetic missile.

With interior sources, the expansion coefficients in the free space surrounding the N

layer sphere and the expansion coefficients in the inner core will be shown to be related by

affine transformations rather than linear transformations.

We model complex sources in a layer by allowing an arbitrary representation of a source

in terms of an expansion in a Hilbert space of vector valued functions. We assume that

if the shell containing the source lies between r = R,, and r = Rp+1 and represent the

expansion coefficients of the electric field due to this source in the inner shell in ternis of
expansion coefficients ý•r (P)m

ea(,on,,fit (mt,)' We assunie that these are given and represent a source

located at a point r = ]p that is between ?, = R;, and r = R,+,. These are obtained

by assuming that the source is unaffected by the medium and that the currents, say in

a dipole source, are used to represent an electric vector ,. This electric vector is then
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represented on the inner shell by the relations,

LIM f fc~r) 2p(x, y, z, w) A0~)(9 ')ain(O)d~do

r -* R, f fa(r) A(m,,) (0, () X0~v)(O es)~if(9)d~do~

=( at) ,Z(",(kRP) (4.3.1)

The values of the expansion coefficients '(p, of this source field on the ifhell r = R, are

given by

LIM f fc(,)w, yz, w) 4(mn)(O,¢ )*in(O)d~dI

6(p) (_T(b'( k) kR)) (4.3.2)

Thus, we know the electric field due to the isolated source at this point ,n the shell

r = Rp. However, unlike the source in the spuce surrounding the N layer spherical structure

we cannot assume that the field is represented by these expansion coefficients and the

expansion coefficients c~~and used to represent the radiation emanating from

the inner shell, as there may be additional sources comfing fr'om beyond r- RI that are

due to external sources and reflections of these sources from the layer T. = l, Instead

we approximate the representation of this source by a finite linear combination oi vector

spherical wave functions and assume that at some point r =RA possibly just slightly smaller

than the location of the actual source, so that value of the field at the point considered

would not be singular, we impose essentially an impedance boundary condition (Wu [55])

at r = R, which will give us a relationship between the general expansion coefficients
',,and f'(,•, and aI(,,- and b used to represent the fields when r < R -,nd the

(mn) (m(n) (mn) (fil.)
expansion coefficients ca("Il) and # and a and b~p'+ that are tised to r 7preient the

(in) ,n) (In11) (m Inn)

fields when 7, > kt. We suppose that thie magnetic vector just outside r = Ap is denoted by

11+ and that the magnetic vector just inside r '--.PP is given by ft and that the boandary

Conditions used to relate the expansion coefficients () and• #P,, and ','(,an) (,,,)
. IP,)an[•+) ) n (P'+) and b(p'+) for

for Ro < r < !Ap to the expansion coefficientms " a n , and #(,+() and( f

R. > ?, > tip are continuiuty Of tanigenitial Colll)onenlts of and1( the nconhomogwieous
hupedaniev bounuary econdition

n (hi'r + 6)(.9, (go (4.33~)
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Taking the dot product of both sides of equation (4,1.3) with respect to the. vector

TIB = (,0

and integrating over the sphere' r~ we see that

a"ý) {a ~k W(C?(k~A)+ Aw~k A.
Min)P (ip) AP)+ e~~n) (nip) (kPAP) I+

WU(P))L {~'b"tjft(W((','p'(kA,)) + ci(;Wp))(W~b;)(kp Ap) )}
a' p+,"-) kP,(MW~' 3 ) (k Ap)})

Ji*? ."~ltt) P (nl,P)(kP P + (rn,n)' P (nip) p(EP)b{Pb.-) (%(I'(A'k A )) + a~)(P- +Wb'(

(Jiwe(p) + o(') W-5 "') ( J~p - ("'ý(k hp)] (4.3.4)
Taking the dot product of both sides of equation (4.3.3) with respect to the oector

VA= A(rnin)(OsO)

aud integrating over the sphere r mAp we see that

V4~fbý :r') (krp) A.l

W/Z(P)~ ~~~~~~~~~~~~~ (Tpln) (~n~p) A)+a ( tý1)(i)(vPP+ (1)k CV)+ (P,'+) Z (4ia) ( p

{ %"~ Z(fal)(kpfi,,) + .!P Z ( 3 (k,, (4)3.5)

U~izg th facfth t & i' ) = 0 arid tfn = 0 and that the coeffirients a~' ad ," are
comnpletoly known gives us a simple relationship beCtween the expansion coefficienits (see
equittion 2.1.13)

[a~~Z +)k70 1) (]+)~ Z (`11') (k 1?p)]
faP- Za(Z"?(k, AP) + z~(k1,,' R,.)] (4.3.6)

and niulitplying both mides of th,. relationship

p (R,) 9P(Rp). (4.3.7)
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by B(,,,(G, €) and integrating over the sphere r =A we see that

[_-.(P,+) z(b")(•k p -_ (p,+) W(b,3 (kR ,

O,,-) .,'1(k, c(p,-) .. ,3(Is R , (4,3,8)

We define
S= ! ,(4,3.9)(,,) •0 1 ,,.,•

and

and finally,

(,• () + , , ',W(),,,(.,) (4.p3.P

The expansion coefficients on opposite sides of the sphere r A- are in view of eque'-

tions (4,3.5), (4.3.4), (4.3,6) and (4.3.8) and equations (4.3.9), (4.3,10), and (4,3,11) are

related by
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(p,-) (p,+) " .

.t (p, -) 01 (P,+) .etpM)
I (p0',) - S"1 (,) (4.3.12)

(mm) .Min,.

•'(MP"- &)J L 0'((.•,) i(i) . , j.

To complete the determination of the relationship between expansion coefficients in one

layer to, those in the next one we use equation (2,2.11) and equation (2.2.13) to write

(1+)- a(3+,-) ••.

S... 4P-Ift ýmjl,) •(mn)

O"',-, (P 0(m,1,-) $-,S , ii 4,K) (4.3.13)
"(•3'-) - Qt),,h )

, min,) , (i-•n,") .'(m,n)

Now as ther'e are no sources en the core region we have for the simplest gtru,,ure with a

bsource in a (..gle shell the relationshipTl

0 (I (:1,- (4.3.14)
b,.,ti n b.(31-) " (n , 3,( . ,

"m'"~t) (mn (M0 '1• )

where the known fleld representation coefficients e(,,,,"•() &11,)•e') and e•p,4) arid ,,.(• rgve

by equations (4;.3.10), (4.3,9), and (4,3.11) rcspvctivelý, The general relations~hip is giveni

by
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( '+) ,(N+',-)

- Q (1)Q (2) Q. , (N )
n n it (N + 1,- )

(rn,n)b n%

(m,n)

N-1 .p,'2)

E- -1 (rn) (4.3-15)

I (p,4)L. ,(m,n)I
As before, if the expansion coefficients aN+i,- and +I,-)of the external source are

'(m,?1)(,,) ofteetralsuc r

known, then we have a system of 4 equations in 4 unknowns connecting the expansion

coefficients in the source free core and the expansion coefficionts .(,N,+) and (,,)

the radiation scattered by the N layer bianisotropic structure,

5 Energy Balance

5.1 General Considerations

The total power absorbed by a general structure can be determined by a Poynting

vector analysis on the surface of the body. The total energy abu.orbed1 ii the total cliergy

entering the body minus the total energy scattered away from the body.

5.2 Bianisotropy and E H Coupling

In this serfion we consider the unusual energy balance relationships associated with the

interaction of radiation with a bianisotropic material ([13]). The energy balance analysis

for an isotropic sphere is carried out in great detail in (Bell [11]), An interchange of (lot

product and cross product in the triple scalar product implies that the total absorbod
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power P, is given by

where we have used the fact that on the spherical boundary r = RN we have

nl x .Yj,.l = n X 9N (5.2.2)

because tangential components of 9 are assumed to be continuous across boundaries sep-

arating regions of continuity of tensorial electromagnetic properties, We next make use of

the fact that for an impedance boundary condition on the surface of the scattering body

that

0"xA (5.2.3)

where a, is the inipedance sheet conductivity. From equations (6.2.3) and (5.2.1) we see

that

P, = (1/2)Re fj (I? N P XlN)A* RUdA+

(l/2)Re JJ [VIN) [g (o. (4 Pý r7 dA (5.2.4)

Using this and the fact that

,fi,(.× = 9'. curl(f) - 9.. curl(f") (5.2.5)

we dherive' a forniula for the internal energy leinsity. For a sweeping beani or a stationary

loenll interacting with it bianisotropic body or a stationary beam interacting with a moving

body (Hebenstreit [291) there may be unu.sual couplings of the electromagnetic energy with

the structure, For a general one layer structure covered by an impedance sheet the internal

energy density is given in ternis of the bilinear form

)(E, H)=

j{g.(iu)' +0 )E)+ j (-twe + a ~*dv±

(.2+ , (W'))} lv+
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H 1 2 {( i (*,*H2*) + 2 '. ( ýb dv+

1 H {12.0 fE2) + (HIi;2 1)dv+

L2 ~~(E2 + n)~ -(?i)A.) I da (5.2.6)

where S2 is the bounding surface and V2 is the interior volume. This can be used as a

source term for the heat equation and can be used to predict the, •.-ponse of the structure

to a sweeping beam or the response of a moving structure to a stationnry beam (Ferencz

[25], Gamo [26], Hebenstrei, [29], and Shiozawa, [44]). Energy balance computations were

carried out in (Bell, Cohoon, and Penn [101, [11]) for isotropic structures and in (Cohoon

[15]) for anisotropic structures. These energy balance computations invulve comparing the

total energy entering the structure minus the total energy reflected from the structure to

the sum of the integrals of the power density distributions in the impedance sheets and in

the layers themselves.

5.3 Computer Output

Electromagnetic Energy Depou~tion, in a. Concentric Layered Sphere.

Frequency - I.OOOE+03 MHz.

Field Strength - 1.00 V/M Number of Regions = 2

Core Radius - 1.1 cm Shell Radius - 3.3 cm

Core Prop6rtiej

Relative Permittivity (Radial): ( 50.00, 0.00 )

Relative Permittivity (Angular)- ( 50.00, 0.00 )
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Relative Permeability (Radial): C 2.00, 1.00 )

Relative Permeability (Angular): ( 2.00, 1,00)

Conductivity (Mho/M) (Radial): ( .600, .600)

Conductivity (Mho/M) (Angular): ( .600, .600)

Impedance Sheet Cond. (Mho/M): C O.OOE÷O0, O.OOE+00)

Surface Boundary (cm) = 1.1

Shell Properties

Relative Permittivity (Radial): C 30.00, 0.00 )

Relative Permittivity (Angular): ( 60.00, 0.00 )

Relative Permeability (Radial): ( 2.00, 1,00 )

Relative Permeability (Angular): (.5.00, 3.00)

Conductivity (Mho/1i) (Radial): ( .200, .600)

Conductivity (Mho/M) (Angular): ( .400, .600)

Impedance Sheet Cond. (Mho/M): ( O.OOE+00 O.OOE+00)

Surface Boundary (cm) a 3.3

Total Absorbed Power a 9.10716094E-6 Watts

(by Poynting vector analysis on the surface

and by volume integration of the power density

over the interior)

Average Absorbed Power = 6.04996E-2 Watts/Meter**3

The fact that the total absorbed powerobtained by a Poynting vector method and the

total absorbedl power obtained by volune integration of the power density distribution

nearly coincide reprcsents a confirmation of the correctness of the coding implementing

thl solution for an anisotropic splero. The determination of the total absorbed power by

the Poynting vector Iuethol, ,4 d&Ncribed in (Jones [33]) and in full detail in (Bell, [11).

For the plane wtive problein described in Jones ((33]) we can give exact formulas for the
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total absorbed power in terms of the total power entering tile sphere minus the total power

scattered away from the sphere (Q33], page 504, equation 126). We let a(1 ,,N+1) and fl(nv+I)

denote the expansion coefficients of the scattered radiation and by carrying out an energy

balance book keeping on the boundary we observe that the total absorbed power is
SrE0 12 Ii;•r0 Z(ra+ "

P8 VCo L F (2n + l)(,i(,,N+l) +/f(,,N+,•

7rIEo 1F;10[ :(2n + 1) (I + I ,,+,) 12) (5.3.1)

This is the referred to as the Poynting vector method in the computer output; the last

number is the result of numerically integrating the power density distribution over the

interior of the sphere. The difficulty of this numerical integration is evident from the

following plot of the internal power density distribution for an anisotropic structure with

a radial permittivity that is higher than the tangential permittivity,

Figure 5.3.1 The electric and magnetic power density distribution on
an equatorial slice of a two layer sphere subjected to
a single plane wave. The core in this sphere and the
one on the followilg page are identical. The difference
is the protective nature of the shell in the following
figure.
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5.4 Thermal Response to Radiation

The absorption of radiation results in a temperature increase. An enLergy equation

describing this change of state is given by

)De Q,' +• at ot+
Dt = T) () Q +

(-pdiv(tvY) +'div(Kgrad(T)) + 0, (5.4.1)

where e is equal to cT with T denoting the temperature, and c, denoting the specific

heat at constant volume, $ is the viscous dissipation function (Anderson, Tannehill and

Pletcher [1], pages 188-189), V! is the fluid velocity, p is the density, p is the pressure, / is

the tensor thermal conductivity, the term representing the transfer by radiation from one

part of the fluid to another is given by (Siegel and Howell [43], page 689)( 16oeT3  (5.4.2)
at ( 3aR

where the internal radiative conductivity is given by

k, 16a',T 3  (543)
3aR

where a. is the Rosseland mean absorption coefficient (Siegel [43] , p 504 and Rosseland

[41]) and where a, (Siegel [43], page 25) is the hemispherical total emissive power of a

black surface into vacuum having a value of

a, = 5.6696 x 10-8 Watts / (mcters•'s K ), (5.44)

and where if B(P, 1i) represents the absorbed electroniagnetic energy per unit volume,

whose integral is, (after conversion from cgs units) equal to the b(f, fl) given by equation

(5.2.6) then

,•= Bi). (5.4.5)

In general solving equation (5.4.1) re(litires the simultaneous solution of the Maxwell,

continuity, and nionientum equations (sce Jones [33], 1) 775). However, for low l(evels of

radiation the energy equation (5.4.1) reduces to a simple vheat equation with a sour('ce termi

which can be solved b)y dove•tiling ([12], [14]) it to tia, socltittion of tlh Maxw(ell ((jlu•1iioiis.,

The experimental verifi'atioin of thc latter procedure is describd in ([12]) and in ([14]).
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Contents
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1.1 Integral Equations for Bianisotropic Materials

2 Layered Materials
2.1 MAGNETIC SLAB IE

3 DISCRETIZATION
3.1 PIECEWISE LINEAR APPROXIMATION

There are as yet no exact solutions to the problem of describing the interaction of
electromagnetic radiation with aerosol particles having a complex shape, e.g. N handled
spheres, toroids, fibers, flakes, and complex cross linked particles such as thas,ý fourd in
cirrus clouds. Those whose regions of homogeneity are delimited by a surface generate( -y
rotating a curve about an axis, are bodies of revolution if the electromagnetic pierlie.
are also invariant with respect to rotation about this axis. The interaction of aubitxary
linearly responding materials to electromagnetic radiation can be described by volume
integral equations, whose accurate solution may tax even the most advanced computers.
However, for bodies of revolution we can by Fourier analyzing the field we can represent
the field by golving integral equations inl the surface electric and magnetic current Fourier
components on the generating curve - - a one dimensional integral equation instead of a
three dimension integral equation.

We illustrate the method of discretization of integral equations il an ele4Tientary way in
this paper by considering an interesting integral equation formulation of the problem of the
interaction of eleeromagnetic radiation with an anisotropic magnetic slab. This problem
cran be solved exactly, and the. accuracy of our discrete representation Ca'L h!e verified by
comparison wit] the exact solution.

365



1 INTRODUCTION

The moist general linearly responding niaterialk are bianisotropic. The Faraday and
Ampere Maxwell equations for time harmonic radiation have the usual forms

curl(E) = -iwB

and
curl(H) = iwD + crE

where the magnetic flux R and the electric displacemnit D depend on both the electric
and the magnetic vector.

1.1 Integra), Equations for Bianisotiopic Materials

We can make Maxwell'm equations look like the standard Maxwell equations with com-
plex vottvce. hy introducing the generaized electric and magnetic current densities by the
relations,

eurl(E) =iAA/t(I- J,, (11.1)

and
Curl(H) = iwt)E + J, (1.1.2)

where
J. iteEE + all - iwaE (1,1.3)

and
J?, iwj4H + 1E - iwpoH (1.1.4)

The formulution of intogral equatiwis for bianisotropic inaterials, therefore, is carried out
by the analysis of the following coupled syst(,nl of integral equations based on the notion
of electric and nagneti;- v!hulrgcs dcfine dy theb two coontinuity equatioLnS

1i,,(J,-) 4- -0P! (1.1.5)

and

Having devchle'ld this tfe 'oeulhd s o';t,,ii of ilit'gral (equations (ldscribiig the inter-
acti(c1a of ehltrozmi•ingtice m:ardiat.ion with a 1'Iler, bianisotropic 1,ldy Q is given by the(-
foliowiaig verltimhs. The, chectri,' iveIr iit, grul v(,111tioii is givel 1by

E E" - /r l(* d' -1 ,(,,) ,(
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-iWo f JG(r, s)dv(s)+

- curl (J~ ..G(r, s)dv(s))(1.)

and the magnetic field integral equation may be expressed as

fI-H& = -grad (jdiv(J..) G(r s)dv(s))

-2-grad (f (J- n)G(r, s)daG3))

-iWE 0 fa J,.G(r, .s)dv(.s)+

+ curl (jJG(r, .s)dv(s))(1.)

where G(r,s) is the rotation invariant, temperate fundamental solution of the Helmholtz
equation,

(a + k)G=6 (1.1.9)

given by S=p(- 
iko r -

(

4r Ir-sI
Substituting (1.1.3) and (1.1.4) into equations (1.1.7) and (1.1.8) we obtain, the coupled

integral equations for bianisotropic materials. The electric field integral equation for a
bianisotropic material is given by,

-grad ( div(iwE + aH - iwe0 E G(rs)dv(s))

wC0  80ie c- w

-iWPjo I iweE + aH - iwe.oEG(r, s)dv(s)+

- Curl ( ni-wjAH + flE - iwpaHG'(?-,)dv(.s)) (..1

and the magnetic field integral equation for a bianisotropic material is given by

H - H' =-grad (/f div(iwpH + )3E - iwitoH G(r,s)dv(s)

H - H' -gradWit 0  G r

t -grad J (iwitH + O3E - iwpoH . n)G(r, s)da(s)

-zweaO f (iwAsH + 3E - iwjtoH)G(r,,.9)dv(s)+

+ curl (n iweE + otH - iweaEG(r,,s)dv(q)) (1.1.12)

In the subsequent sections we shall explore methods of resolving these integral cquaticns
on existing computers using novel, powerful analytical nithods of solution.
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2 Layered Materials

We have formulated some one dimensional scattering problems associated with mag-
netic materials, and solutions obtained from the differential equation formulations have
been substituted into the integral equations and have been shown to satisfy them exactly.
For magnetic materials, a single integral equation was obtained and the significance of
surface values of the derivative of the electric vector were shown to be important, For
higher order splines all terms arising in a matrix representation of the integral cquation
formulption of the problem, and all iterates of the integrals could be computed exactly.
Using dimstribution theory concepts, we have combined the electric and magnetic field in-
tegral equations for the case of a plane wave that is incident normally on the magnetic
slab,

2.1 MAGNETIC SLAB 1E

We consider in this section radiation nornmally incident on a magnetic slab, and assume
that the electric vector of the incident radiation has the form

E' = Eoexp(-ikc1 z)e, (2.1.1)

so that the niagnetiv vector of the incident radiation defined by the Maxwell equation,

-iwiioH' = r(FtV(i

-e ~Etucx;p(-ikuz)

-ikoEor;rp(-ikuz)-e, (2.1.2)

is after dividing both sides of equuation (2.1.2) by -iwp is givwii by

H' AEi .I(- ~ e (2.1.3)

Within the zla1g1tw, s.' 1111), where the permittivity (, the permeability 11, and the conldtdu(-
tivity a are (ldiagomal teinsors in Cartesiam coorclii.tcs, the first, Maxwell equation has the
for-II,

ruClt7()) :(w 4 + r*.)e ±(/f1wj 4I- Trj )JE.;c,,

+ (iwu. + •)E,.e, (2.1,4)

However, if thwe s. tizni.iting 'let trii'c vctor has ouly ýI1v x vomllni ie'ut, thell the smile is t~ruec
of the reflected, ind-ced, mid traz si itted r1dit titmot, a i(i, thils, we, many a.ssiuile tilat within
the slab that this is also truc. Hcncr, we assiiiieu cliii t. within thc slab,

E .... ,,,( z)c ,( .- it).. =- E ., (2.1.5)/ 368



Since then

curl(E) = -ei (- = E OHue (2.1.6)

we conclude that

Hv - (2.1.7)
WAY Oz

Using (3.4) we conclude that

curl(H) = e2, (-z) Hy (2.1.8)

which implies that
curl(H) =

e, -1()Z

= C'.(iwe., + arr)E., (2.1.9)

Thus, multiplying all terms of this last equation by iwhst we see that

,02E. _A I)(z) OE,
Oz2  11,(z) Oz

(-W 2 PV, + iW,.st,')E. (2.1.10)

We ar,•, therefure, seeking an impulse response of the equation,

02 E , 2-9 E . + W 2 po eoE x

(1)__ O E,
i4' -z-E + (w2 °oE° - I'f)+ iw,".,a)E, (2.1.11)

We Introduce the vari.able

r -. W' Iuyz - i,,,ll'a,.- W 2/ 0 f0 , (2.1.12)

where we agree that. e, it, and a take their free space values outside tCie slab, and ,suixe
that E - E' has the form,

E - E= cj exp(-iko I - z I)d:,

2 i - 11)

whei- w,- write the global magnetic permeability via the rlationship

(- ( Z - Y( - L).)(ji I, + pi/, (2.1.14)
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where
0 if z < 01~) if z<0 (2.1. !5)

is the Hlcaviside function and
YM(z) = 6(,) (2.1.16)

is the Dirac delta function and where we think of i as the permeability at any point and
think of A5 as the value of permeability inside the slab. Thus, with this definition and
recognizing the tangential cu.oponent of the magnetic field as being proportional to the
reciprocal of the the magnetic permeability times the derivative of the electric vector with
respect to z in view of the relationship

iOEr
Wity Oz

and seek a representation of the form,

E, - E = c LrEexp(-iko I z - i Idi

+b 1-I(i) OE. Eexp(-iko I z - f J)di

-b I - -P'E(L)exp(ikoz)erp(-ikoL) (2.1.17)

Theorem 2.1 If E', satisfies (2.1.17) and E, is twice continuously at points inside and
outs-ide the 4lab, then (a) outside the slab E - E' has the representation

SCrexp(ikoz) fo r - < 0

E - E' {=o (2.1.18)

C'cxjp(-ik,:) for .7 -> L

whe:rc C' i, the: reflctizon eoIfiecunt, and C' i., th,: coe-fici ct dcfin'iny the tranamitted
rediation (c) if a functiont Er that t,4 differentiable t.nid,' and outbide the slab iati.ifie•s the
integral equation, then. E, i.s continuous on the entire' real linc, and fu,'th,:rrnore, if H - H'
i.q determined from ('2.1.17) via the relationxhip

H H' -w / I Ecxp( -[-

-- =~ - r E~r(.t (- .kI - )dz

+ . ... r ,~E r rp(--t ,(3 : d

770



+ -i L ,)(z) OE, cxp(-ik(i -2wuito I y DiO

I - -0 (0)(-izo( - i k))z

i (1 .oE )•_(L)e(_k)

+ YL_ý1 ( t(o))a-

ia(1 H - A i) nu o te(L)exp(ikcz)exp(-ikoL) (2.1.19)

and H - H' is continuous across the boundaries of the magnetic slab. Furthermore, the
classical solutions of the integral cquation (2.1.17) are solutions of Mazwell's equations
provided that

b (2.1.20)
2k(

and S-2 -• (2..1.21)

Proof. Equations (2.1.20) and (2.1.21), which represent the evaluation of the parame-
ters in the integral equation (2.1.17) follows by substituting (2.1.17) into Maxwell's equa-
tions. We begin by computing the first and second partial derivatives of E, with respect to
z from the integral equations and we then us-i these expressions to show that (2.1.20) and
(2.1.21) are needed in order that Maxwell's equations be satisfied. We find, upon breaking
up the integral from 0 to L into the integral from 0 to z plus the integral from z to L and
differentiating, that

OE OE'
- c-rE1 - cTrEZOz Oz

c(-iko) fo rEexp(-iko(z -

IL
c(iko) J rE.exp(-iko(i - z)di+

b b ~ +

(-Iko)b]-o ( -g-T)O (-iko(z - z)di

+(iko~b/ a('')(!) OE.
Oko j,•( a __Xp(-,ko(i - z)di

+(-I'ko)b (1 1, -! ') .(0)exp(--ikoz)

- (iko)b 1 1() -F -(L))xp(ikoz)cxp(-ikoL) (2.1.22)

liwx(L) (9z

We now take the derivative of both sides of this last equation with respect to z obtainiig

O'E 02 E'
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c(-iko)2j/7EIC~rp(-iko(z - ,;))di + (-iko)crE.,

- (iko)crE, + c(iko)2 jL -r.E,.cxp(-iko(i - z))di +

(-iko)bzL-k-i 9~ +(-iko)'bf - E--~exp(-iku(z .- )d; +
(ik)1sY P) 0E pu 8

+(-iko )2 b (~10 ýEO)exp(--ikOz)p"(O)) Oz

- (iko)2b ( 1 - -x(L)exp(ikoz)exp(-ikOL) (2.1.23)

We now make use of the fact that

-k2E- E') k-O -k cjrex(ik -

0 7-E)cxp(- ik I z - I d i

+b f -x(jc Iz-iJd

-~b I u _± OkI 'E(~ (ikoz)exp-koL (2.1,24)V ,i(L))O -~(~xoP-oj
and substitute it into our equation for the difference between the second partial deriva-tives ef the stimulated and incident electric. field vectors. Rewriting (2.1.23) to make this
substitution transparent we see that

O'E cl'E'
D.- 5Z2=

-. (ko)2 {c rE.exrp(-ikO(z - )d

±cf rE~~c.rp(-ikO(i - )d

+ OE Ii(ioz ~.

+ b I------c.rp(-tko(zi - z)di

+ b(- I E-)(O) rxp(-Ikoz)
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S -) PO ý-E(L)cxp(ikoz)rxp( -ikoL)}V yi(L) ) oz

2(iko)crE,, + 2(--iko)bO-ý)( (2.1.25)
ji•(z) Oz

Simplifying the above equation we find that

82 E O' E-B I B a z =t - k o'( E , - E ,,'.)
T2- - TF

- 2cikorE, - 2ikob- LOEx (2.1.26)
,iV(z) O6z

We next simplify this equation by making use of the fact that the electric vector, El,
of the incident radiation satisfies the free space Helmholtz equation

i92 E'
O + k2E' = 0 (2.1.27)

Substituting this into the previous equation we find that

0z , + ,EýE

- 2ciko'rE• - 2ikob> A ((z)21.28)

We now need to select c and b in the above equation so that the equation is identical
to equation (2.1.11) where 'r is given by

7 = W 4 x- iWP'Joar -W /lc

=k 2 - k k2 V _W
2jLe (2.1.29)

We see that we need
- 2ikob = 1 (2.1.30)

and
2ik•c = 1 (2.1.31)

In order to define the operations we note here that, while it is true that we cannot in
general multiply distributions, certain orders of distributions can act upon spaces larger
than the infinitely differentiable functions. For example, order 0 distributions: can act on
the continuous functions with compact support, and order one distributions can act on the
differentiable functions with compact support, et cetera which will enable us to (dhfin( the
product of an order 0 distribution u and a continuous function f by the rule,

(uf ,$) = (u,f4) (2.1.32)
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where € is a test function. However, the finction uf is not a general distribution, but is
a continois linear functional on the space of coMfinous f1unctions with coiipact, support.

The integral equation is then derived by recognizing that in view of equation (2.1.9) that

.92 E- + k2Ex =

V- iwY')(z)Hy - rEx (2.1.33)

By convolving the fundamental solution of the left side of this equation with the right
side we obtain the integral equation. Since, as we have shown ([6], [21]), every solution
of the integral equation is a solution of Maxwell's equations and the solutions of the inte-
gral equation satisfy automatically the Silver Mueller radiation conditions and tangential
components of the electric and magnetic vectors are automatically continuous across the
boundaries, the solution of the integral equation is necessarily the solution of Maxwell's
equations. Since the solution to this electromagnetic interaction problem is unique, the
function space under consideration is the space of functions which are, along with their
derivatives, continuous up to the boundaries. When the slab is nonmagnetic, then unique-
ness may be proven in the function space ([21], pp 69-130) consisting of all vector valued
functions 0 such that

fi I • Jdv + I curl(o) 12 dv < 0 (2.1.34)

3 DISCRETIZATION

To approximate the integral equations on a computer with a finite memory, we divide
the slab with which the radiation is interacting into thin wafers separated by planes whose
normals are perpendicular to the planes defining the boundaries of the slab.

3.1 PIECEWISE LINEAR APPROXIMATION

We conside(r approximate integral equations of the form

E(z) - E (z)=

j= {A, + B,(y -<}(,id

B L(-,y)dy +

F(z)Bi - G(z)BN (3.1.1)

where w,' Sup oMC that the jtibrs zi (IS tc .'hned by

, < z < ... < z -I <: ý < ... < zN = L (3.1.2)
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and that within the stibinterval (zj- , Z,,), the electric vector is approximated by

S= (Aj + Bj(z - z;))e., (3.1.3)

where the constants Aj and Bj contain the exp(iwt) time dependence. We have a separate
equation for each value of z. At this stage there are several methods to obtain a matrix
equation from this continuum of approximate equations. One obvious method is point
matching by selecting two points (2j-1 and (2j in the subinterval [z.- 1 , zj], This gives us a
system of 2N equations in 2N unknowns, which have the form

E(LGf-q+i) -, E'((.2t-q+±) =

At + Be(C2._q+I - z;) - E'(ý21-q+)=

ý ' A3 + B3 (y - ;}K((2t-q+l, y)dy +
j.1 i-l

SJJ BjL((•-2 t_+,,y)dy +

j=1 " -1

F(( 2t_.+,)BI - G((2tq+I)BN (3.1.4)

Defining

U = o j e (3.1.5)

We now use the delta function notation to rewrite the previous equation to make it look
like a matrix equation. We find that

N

L 6(j,t) {Aj + Bi((~2i'q+l - )

- ,, K((•,+,.t d +j=1

-j A1 JY ZK((21-q+I, y)dy±

4~'~-1 1;K(f..~¶~Y -

N

N

Z 6(ji)BjG((2'-q+i) = E'(2t-,q+I) (3.1.6)
j=1

We now represent this last equation in the matrix form
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B E'(V2)
A2  E'((3 )B2 E'((4)

T = (3.1.7)

AN E(C2N,-,I)
BN Ei(C21N)

We now describe the entries of the matrix T. Note that if we define

A{ p= 0  
(3.1.8)

Bj p= 1

that then the system of equations may be expressed more compactly in the form

IV (T(t+ 21+)2+) I
E~f LfT(21-1+q,2j-l+p)C2j-l+p)

Ei(¢wtq~l))(3,1.9)

where qe {0, 1}. If p = 0, then for each qe {0, 1} we have

T(21-1+q,2j.1+') b - L2) K(2,-,q+,, y)dy (3.1,10)

On the other hand if p = 1, then again for each qe {0, 1} we have

T(.t-,+q,2j--l+p) =

6(j,1)(2t,-q+ - Z;)

f" K(C~,juq, )dyI- 4

-J' L(('2 &-q+iy)dy
2)-j

- b(jI)F((2&.-q+I)

+ b(j.N)G(C2e-q+1) (3.1.11)

Ther(fore, the solution of the matrix equation (3.1.7)

T4 = 9' (3.1.12)

thez7 gives paranwters in an approximate representation of the electric vector of the induced
,electromagnetic fihl.
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APPENDIX C

TECIHNICAL AGENDA

MONDAY. 24 JUNE

9:00 Registration

9:50 Opening Edward W.Stuebing, Coordinator, CRDEC

Welcome Mlchael A. Parker, Technical Director, CRDEC

Announcements, Deborah Clark, Administrative Host, Battelle

I. AEROSOL DYNAMICS

A. VAPOR - PARTICLE INTERACTIONS

Moderator: Glenn Rubr.f

10:10 M.E. Seaver (NRL), Condensation of Organic Vapors onto Evaporating Water drops

10:30 K. Zeong (Argonne), Adsorption of Heavy Alcohols onto Simulated Atmospheric Aerosols

10:50 A.K. Ray and J. L. Huckaby (Univ. of KY), Characterization of Absorbed Layers on Single Particles by
Elastic and Raman Scattering

11:20 J.R. Brock, C-W Chong, B. J. Jurcik (Univ. of TX/Austin), Formation and Growth of Particles in
Rapidly Expanding Flows

11:50 LUNCH

B. TRANSPORT AND DISPERSION OF AEROSOLS

1:15 J.R. Brock (Univ. of TX/Austin), Formation and Growth of Conductive Carbon Fibers in Corona
Discharges

1:35 T. Tsang (Univ. of KY), Second Order Closure Modeling of Dispersion of Smoke in Convective
Boundary Layers

1:55 M. Porth and J. E. Cermak (CO State Univ.). Statistical Analysis of Concentration Fluctuations for
Plumes in Simulated ASL

2:15 H. Lifman, M. H. Morgan Ill, and J. D. Paccione (RPI), Transport of Particulate Aerosols in Pipes

2:35 BREAK
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II. AEROSOL CHARACTERIZATION METHODS

B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING AND INVERSION (Cont.)

3:15 B.P. Curry and M. R. Jones (Argonne), Single Particle Inversion Study

3:35 J. Bottiger (CRDEC), Feasibility of Direct Inversion for Small Spheres

3:55 M. Lax and P. Hu (CUNY), Semi-Binary Decisions from Light Scattering Data

4:15 P.A. Lawless and S.V.R. Mastrangelo (Research Triangle Institute), Stochastic R,.construction-A New
Data Inversion Technique

4:35 Adjourn

WEDNESDAY, 26 JUNE

I I. AEROSOL CHARACTERIZATION METHODS

B. PHYSICAL CHARACTERIZATION - LIGHT SCATTERING AND INVERSION (Cont.)

8:30 E. Fry, G. G. Padmabandee, and C. Oh (TX A & M Univ.), Measurements of Scattering At and Near
00 by Glass Fibers

III. NONLINEAR EFFECTS

Moderator: John White

8:50 R.L. Armstrong, J-G Xie, T.E. Ruekgauer, and R.G. Pinnick (NMSU), Evaporative Instability in Pulsed
Laser-Heated Droplets

9:10 J.P. Barton and D. R. Alexander (Univ. of NB/Lincoln), Recent Progress Concerning Electromagnetic
Field Calculations for a Beam Incident Upon an Arbitrary Particle

9:30 G. C(ten (Yale Univ.), S. Hill, P. Barber (Clarkson Univ.), and R. K. Chang (Yale), Frequency Splitting

of Degenerate Spherical Cavity Modes due to Shape Distortion of Flowing Droplets

9:50 BREAK

10:30 K. Juvan, D. Leach and R. Chang (Yale Univ.), Phase-Modulation Broadening of Elastic Scattering due
to Intensity-Dependent Index of Refraction Effects

OVERVIEW AND DISCUSSION

10:50 E. W. Stuebing (CRDEC), Overview of Aerosol Research Program and Discussion of Directions for
Future Research in the CRDEC Aerosol Science Program

11:50 LUNCH 398
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WEDNESDAY, 26 JUNE

A. POSTER PREVIEWS (Auditorium) (Cont.)

IV D. Cohooi. (West Chester Univ.), Algorithms for the Deteimination of Electromagnetic Interaction of General
Sources of Radiation with Multi-layer Bi-anisotropic Spheres and Cylinders

IV D. Cohoon (West Chester Univ.), Algorithms for the Solution of Integral Equations Describing the Interaction
of Radiation with Gerierm Structures and Bodies of Revolution, Including Bi-anisotropic Oblate and Prolate
Spheroids

IV D. Cohoon (West Chester Univ.), A Connection Between Modes of Propagation in Anisotropic Coatings and
the Theory of Analytic Functions of Exponential Type

IV J.R. Brock (Univ. of TX/Austin), Finite Elements Solution to Maxwell Equation

3:30 B. POSTER SESSION (Seminar Area) (3:30-5:30)

THURSDAY, 27 JUNE

IV. OPTICAL PROPERTIES OF AEROSOLS

Moderators: Orazio Sindgnil. Riobert Frickel

8:30 D. Cohoon (West Chester Univ.), Mueller Matrix Computations for Multilayer, Magnetically Lossy,

Anlsotroplc Spheres

8:50 R. T. Wang (ISST), Scattering by Spheres of Narrow Size Distribution

9:10 E. Bahar, S. M. Haugland, and A. H. Carrieri (Univ. of NB/Lincoln), Mueller Matrix Elements for
Optically Thin Chemical Coating Layers Over Rough Surfaces

9:30 BREAK

9:50 A. Pluchino and 0. W. Pack (Aerospace Corp), A Close Up Look at the Rainbow

.10:10 S. HIMl P. Barber, 0. 0. Chowdlhury, M. Mazundir, and E. Khaled (Clarkson Univ.), Resonances in
Inhomogeneous Droplets

10:30 M. Kerker (Clarkson Univ.), Scattering of Evanescent Wave by a Particle on a Surface

10:50 BREAK

11:10 B. Evans and G. R. Fournier (Defence Research Establishment Valcartierl, Bridging the Gap Between
the Rm"leigh and Thomson Limits for Various Convex Bodies

11:30 L.D. Cohen, A, Cohen, R. D. Haracz (Drexel Univ.), A. Ben-David (Science and Tech. Corp), and Y.
Benayahu (Soreq Nuclear Research Center). Cloud Particle Size Distribution Functions from LIDAR
Multiple Scattering
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